Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4262, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802387

RESUMO

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Assuntos
Fixação de Nitrogênio , Filogenia , Nódulos Radiculares de Plantas , Simbiose , Simbiose/genética , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Evolução Molecular , Evolução Biológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/microbiologia
2.
Appl Plant Sci ; 12(1): e11560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369981

RESUMO

Premise: Among the slowest steps in the digitization of natural history collections is converting imaged labels into digital text. We present here a working solution to overcome this long-recognized efficiency bottleneck that leverages synergies between community science efforts and machine learning approaches. Methods: We present two new semi-automated services. The first detects and classifies typewritten, handwritten, or mixed labels from herbarium sheets. The second uses a workflow tuned for specimen labels to label text using optical character recognition (OCR). The label finder and classifier was built via humans-in-the-loop processes that utilize the community science Notes from Nature platform to develop training and validation data sets to feed into a machine learning pipeline. Results: Our results showcase a >93% success rate for finding and classifying main labels. The OCR pipeline optimizes pre-processing, multiple OCR engines, and post-processing steps, including an alignment approach borrowed from molecular systematics. This pipeline yields >4-fold reductions in errors compared to off-the-shelf open-source solutions. The OCR workflow also allows human validation using a custom Notes from Nature tool. Discussion: Our work showcases a usable set of tools for herbarium digitization including a custom-built web application that is freely accessible. Further work to better integrate these services into existing toolkits can support broad community use.

3.
Appl Plant Sci ; 12(1): e11563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369975

RESUMO

Premise: Plant trait data are essential for quantifying biodiversity and function across Earth, but these data are challenging to acquire for large studies. Diverse strategies are needed, including the liberation of heritage data locked within specialist literature such as floras and taxonomic monographs. Here we report FloraTraiter, a novel approach using rule-based natural language processing (NLP) to parse computable trait data from biodiversity literature. Methods: FloraTraiter was implemented through collaborative work between programmers and botanical experts and customized for both online floras and scanned literature. We report a strategy spanning optical character recognition, recognition of taxa, iterative building of traits, and establishing linkages among all of these, as well as curational tools and code for turning these results into standard morphological matrices. Results: Over 95% of treatment content was successfully parsed for traits with <1% error. Data for more than 700 taxa are reported, including a demonstration of common downstream uses. Conclusions: We identify strategies, applications, tips, and challenges that we hope will facilitate future similar efforts to produce large open-source trait data sets for broad community reuse. Largely automated tools like FloraTraiter will be an important addition to the toolkit for assembling trait data at scale.

4.
Proc Natl Acad Sci U S A ; 120(28): e2221961120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399376

RESUMO

Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change-associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change.


Assuntos
Aves Canoras , Animais , Mudança Climática , Estações do Ano , América do Norte , Demografia
5.
iScience ; 25(10): 105101, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36212022

RESUMO

Understanding variation of traits within and among species through time and across space is central to many questions in biology. Many resources assemble species-level trait data, but the data and metadata underlying those trait measurements are often not reported. Here, we introduce FuTRES (Functional Trait Resource for Environmental Studies; pronounced few-tress), an online datastore and community resource for individual-level trait reporting that utilizes a semantic framework. FuTRES already stores millions of trait measurements for paleobiological, zooarchaeological, and modern specimens, with a current focus on mammals. We compare dynamically derived extant mammal species' body size measurements in FuTRES with summary values from other compilations, highlighting potential issues with simply reporting a single mean estimate. We then show that individual-level data improve estimates of body mass-including uncertainty-for zooarchaeological specimens. FuTRES facilitates trait data integration and discoverability, accelerating new research agendas, especially scaling from intra- to interspecific trait variability.

6.
Front Plant Sci ; 12: 669064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249041

RESUMO

Phylogenetic datasets are now commonly generated using short-read sequencing technologies unhampered by degraded DNA, such as that often extracted from herbarium specimens. The compatibility of these methods with herbarium specimens has precipitated an increase in broad sampling of herbarium specimens for inclusion in phylogenetic studies. Understanding which sample characteristics are predictive of sequencing success can guide researchers in the selection of tissues and specimens most likely to yield good results. Multiple recent studies have considered the relationship between sample characteristics and DNA yield and sequence capture success. Here we report an analysis of the relationship between sample characteristics and sequencing success for nearly 8,000 herbarium specimens. This study, the largest of its kind, is also the first to include a measure of specimen quality ("greenness") as a predictor of DNA sequencing success. We found that taxonomic group and source herbarium are strong predictors of both DNA yield and sequencing success and that the most important specimen characteristics for predicting success differ for DNA yield and sequencing: greenness was the strongest predictor of DNA yield, and age was the strongest predictor of proportion-on-target reads recovered. Surprisingly, the relationship between age and proportion-on-target reads is the inverse of expectations; older specimens performed slightly better in our capture-based protocols. We also found that DNA yield itself is not a strong predictor of sequencing success. Most literature on DNA sequencing from herbarium specimens considers specimen selection for optimal DNA extraction success, which we find to be an inappropriate metric for predicting success using next-generation sequencing technologies.

7.
Nat Ecol Evol ; 5(7): 987-994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33927370

RESUMO

Animals and plants are shifting the timing of key life events in response to climate change, yet despite recent documentation of escalating phenological change, scientists lack a full understanding of how and why phenological responses vary across space and among species. Here, we used over 7 million community-contributed bird observations to derive species-specific, spatially explicit estimates of annual spring migration phenology for 56 bird species across eastern North America. We show that changes in the spring arrival of migratory birds are coarsely synchronized with fluctuations in vegetation green-up and that the sensitivity of birds to plant phenology varied extensively. Bird arrival responded more synchronously with vegetation green-up at higher latitudes, where phenological shifts over time are also greater. Critically, species' migratory traits explained variation in sensitivity to green-up, with species that migrate more slowly, arrive earlier and overwinter further north showing greater responsiveness to earlier springs. Identifying how and why species vary in their ability to shift phenological events is fundamental to predicting species' vulnerability to climate change. Such variation in sensitivity across taxa, with long-distance neotropical migrants exhibiting reduced synchrony, may help to explain substantial declines in these species over the last several decades.


Assuntos
Migração Animal , Aves , Animais , Mudança Climática , Fenótipo , Estações do Ano
8.
Appl Plant Sci ; 9(2): e11410, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33680581

RESUMO

PREMISE: Large phylogenetic data sets have often been restricted to small numbers of loci from GenBank, and a vetted sampling-to-sequencing phylogenomic protocol scaling to thousands of species is not yet available. Here, we report a high-throughput collections-based approach that empowers researchers to explore more branches of the tree of life with numerous loci. METHODS: We developed an integrated Specimen-to-Laboratory Information Management System (SLIMS), connecting sampling and wet lab efforts with progress tracking at each stage. Using unique identifiers encoded in QR codes and a taxonomic database, a research team can sample herbarium specimens, efficiently record the sampling event, and capture specimen images. After sampling in herbaria, images are uploaded to a citizen science platform for metadata generation, and tissue samples are moved through a simple, high-throughput, plate-based herbarium DNA extraction and sequencing protocol. RESULTS: We applied this sampling-to-sequencing workflow to ~15,000 species, producing for the first time a data set with ~50% taxonomic representation of the "nitrogen-fixing clade" of angiosperms. DISCUSSION: The approach we present is appropriate at any taxonomic scale and is extensible to other collection types. The widespread use of large-scale sampling strategies repositions herbaria as accessible but largely untapped resources for broad taxonomic sampling with thousands of species.

9.
PLoS One ; 14(9): e0215794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509534

RESUMO

Our world is in the midst of unprecedented change-climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed. We found that the most common uses of online biodiversity databases have been to estimate species distribution and richness, to outline data compilation and publication, and to assist in developing species checklists or describing new species. Only 69% of papers in our dataset addressed one or more aspects of data quality, which is low considering common errors and biases known to exist in opportunistic datasets. Globally, we find that biodiversity databases are still in the initial stages of data compilation. Novel and integrative applications are restricted to certain taxonomic groups and regions with higher numbers of quality records. Continued data digitization, publication, enhancement, and quality control efforts are necessary to make biodiversity science more efficient and relevant in our fast-changing environment.


Assuntos
Biodiversidade , Bases de Dados Factuais , Ecossistema , Pesquisa , Conservação dos Recursos Naturais , Publicações
10.
Evol Bioinform Online ; 14: 1176934318774546, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881251

RESUMO

Massive strides have been made in technologies for collecting genome-scale data. However, tools for efficiently and flexibly assembling raw outputs into downstream analytical workflows are still nascent. aTRAM 1.0 was designed to assemble any locus from genome sequencing data but was neither optimized for efficiency nor able to serve as a single toolkit for all assembly needs. We have completely re-implemented aTRAM and redesigned its structure for faster read retrieval while adding a number of key features to improve flexibility and functionality. The software can now (1) assemble single- or paired-end data, (2) utilize both read directions in the database, (3) use an additional de novo assembly module, and (4) leverage new built-in pipelines to automate common workflows in phylogenomics. Owing to reimplementation of databasing strategies, we demonstrate that aTRAM 2.0 is much faster across all applications compared to the previous version.

11.
Bioscience ; 68(2): 112-124, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599548

RESUMO

The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28025346

RESUMO

For vast areas of the globe and large parts of the tree of life, data needed to inform trait diversity is incomplete. Such trait data, when fully assembled, however, form the link between the evolutionary history of organisms, their assembly into communities, and the nature and functioning of ecosystems. Recent efforts to close data gaps have focused on collating trait-by-species databases, which only provide species-level, aggregated value ranges for traits of interest and often lack the direct observations on which those ranges are based. Perhaps under-appreciated is that digitized biocollection records collectively contain a vast trove of trait data measured directly from individuals, but this content remains hidden and highly heterogeneous, impeding discoverability and use. We developed and deployed a suite of openly accessible software tools in order to collate a full set of trait descriptions and extract two key traits, body length and mass, from >18 million specimen records in VertNet, a global biodiversity data publisher and aggregator. We tested success rate of these tools against hand-checked validation data sets and characterized quality and quantity. A post-processing toolkit was developed to standardize and harmonize data sets, and to integrate this improved content into VertNet for broadest reuse. The result of this work was to add more than 1.5 million harmonized measurements on vertebrate body mass and length directly to specimen records. Rates of false positives and negatives for extracted data were extremely low. We also created new tools for filtering, querying, and assembling this research-ready vertebrate trait content for view and download. Our work has yielded a novel database and platform for harmonized trait content that will grow as tools introduced here become part of publication workflows. We close by noting how this effort extends to new communities already developing similar digitized content.Database URL: http://portal.vertnet.org/search?advanced=1.


Assuntos
Bases de Dados Genéticas , Variação Genética , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos , Software , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA