Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693558

RESUMO

Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract: Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.

2.
Front Immunol ; 14: 1233908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662908

RESUMO

In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Animais , Humanos , Sistema Linfático , Movimento Celular , Encéfalo
3.
Brain Behav Immun ; 113: 176-188, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468114

RESUMO

Children that survive leukemia are at an increased risk for cognitive difficulties. A better understanding of the neurobiological changes in response to early life chemotherapy will help develop therapeutic strategies to improve quality of life for leukemia survivors. To that end, we used a translationally-relevant mouse model consisting of leukemic cell line (L1210) injection into postnatal day (P)19 mice followed by methotrexate, vincristine, and leucovorin chemotherapy. Beginning one week after the end of chemotherapy, social behavior, recognition memory and executive function (using the 5 choice serial reaction time task (5CSRTT)) were tested in male and female mice. Prefrontal cortex (PFC) and hippocampus (HPC) were collected at the conclusion of behavioral assays for gene expression analysis. Mice exposed to early life cancer + chemotherapy were slower to progress through increasingly difficult stages of the 5CSRTT and showed an increase in premature errors, indicating impulsive action. A cluster of microglial-related genes in the PFC were found to be associated with performance in the 5CSRTT and acquisition of the operant response, and long-term changes in gene expression were evident in both PFC and HPC. This work identifies gene expression changes in PFC and HPC that may underlie cognitive deficits in survivors of early life exposure to cancer + chemotherapy.


Assuntos
Leucemia , Neoplasias , Camundongos , Masculino , Feminino , Animais , Microglia , Qualidade de Vida , Córtex Pré-Frontal/metabolismo , Cognição/fisiologia , Neoplasias/metabolismo , Leucemia/metabolismo , Expressão Gênica
4.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36216505

RESUMO

Children exposed prenatally to opioids are at an increased risk for behavioral problems and executive function deficits. The prefrontal cortex (PFC) and amygdala (AMG) regulate executive function and social behavior and are sensitive to opioids prenatally. Opioids can bind to toll-like receptor 4 (TLR4) to activate microglia, which may be developmentally important for synaptic pruning. Therefore, we tested the effects of perinatal morphine exposure on executive function and social behavior in male and female mouse offspring, along with microglial-related and synaptic-related outcomes. Dams were injected once daily subcutaneously with saline (n = 8) or morphine (MO; 10 mg/kg; n = 12) throughout pregestation, gestation, and lactation until offspring were weaned on postnatal day 21 (P21). Male MO offspring had impairments in attention and accuracy in the five-choice serial reaction time task, while female MO offspring were less affected. Targeted gene expression analysis at P21 in the PFC identified alterations in microglial-related and TLR4-related genes, while immunohistochemical analysis in adult brains indicated decreased microglial Iba1 and phagocytic CD68 proteins in the PFC and AMG in males, but females had an increase. Further, both male and female MO offspring had increased social preference. Overall, these data demonstrate male vulnerability to executive function deficits in response to perinatal opioid exposure and evidence for disruptions in neuron-microglial signaling.


Assuntos
Função Executiva , Microglia , Morfina , Efeitos Tardios da Exposição Pré-Natal , Fatores Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Analgésicos Opioides , Microglia/patologia , Morfina/efeitos adversos , Receptor 4 Toll-Like
5.
Transl Res ; 250: 18-35, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35811019

RESUMO

Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.


Assuntos
Doenças Transmissíveis , Vírus , Humanos , Organoides , Encéfalo , Sistema Nervoso Central
6.
J Neuroinflammation ; 19(1): 125, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624463

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS: To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS: Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION: These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Quimiocina CXCL13/metabolismo , Humanos , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Interleucinas , Isquemia/patologia , Janus Quinases/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia
7.
Nat Immunol ; 23(4): 581-593, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347285

RESUMO

Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.


Assuntos
Osso Etmoide , Vasos Linfáticos , Animais , Osso Etmoide/fisiologia , Linfangiogênese/fisiologia , Sistema Linfático , Doenças Neuroinflamatórias
8.
Brain Behav Immun ; 99: 192-202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655730

RESUMO

Survivors of acute lymphoblastic leukemia (ALL), the most common childhood cancer, are at increased risk for long-term cognitive problems, including executive function deficits. The chemotherapeutic agent methotrexate (MTX) is used to treat most ALL patients and is closely associated with cognitive deficits. To address how early life cancer chemotherapy leads to cognitive deficits, we developed a translationally relevant mouse model of leukemia survival that exposed mice to leukemic cells and chemotherapeutic drugs (vincristine and MTX, with leucovorin rescue) in early life. Male and female mice were tested several weeks later using novel object recognition (recognition memory) and 5-choice serial reaction time task (executive function). Gene expression of proinflammatory, white matter and synapse-associated molecules was assessed in the prefrontal cortex and small intestine both acutely after chemotherapy and chronically after cognitive testing. Early life cancer-chemotherapy exposure resulted in recognition memory and executive function deficits in adult male mice. Prefrontal cortex expression of the chemokine Ccl2 was increased acutely, while small intestine expression of the proinflammatory cytokine tumor necrosis factor-alpha was elevated both acutely (both sexes) and chronically (males only). Inflammation in the small intestine was correlated with prefrontal cortical proinflammatory and synaptic gene expression changes, as well as to executive function deficits. Collectively, these data indicate that the current protocol results in a robust mouse model in which to study cognitive deficits in leukemia survivors, and suggest that small intestine inflammation may represent a novel contributor to adverse CNS consequences of early life chemotherapy.


Assuntos
Citocinas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Encéfalo/patologia , Criança , Cognição , Feminino , Humanos , Intestino Delgado , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
9.
Curr Protoc ; 1(12): e300, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870897

RESUMO

This article details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Additionally, active induction of EAE in the C57BL/6 strain using myelin oligodendrocyte glycoprotein (MOG) peptide is also discussed. Detailed materials and methods required for the purification of both PLP and MBP are described, and a protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains. © 2021 Wiley Periodicals LLC. Basic Protocol: Active induction of EAE with PLP, MBP, and MOG protein or peptide Alternate Protocol: Adoptive induction of EAE with PLP-, MBP-, or MOG-specific lymphocytes Support Protocol 1: Purification of proteolipid protein Support Protocol 2: Purification of myelin basic protein Support Protocol 3: Isolation of CNS-infiltrating lymphocytes.


Assuntos
Encefalomielite Autoimune Experimental , Transferência Adotiva , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Glicoproteína Mielina-Oligodendrócito
10.
Trends Immunol ; 42(11): 940-942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656427

RESUMO

A new study by Da Mesquita et al. reports on how meningeal lymphatic modulation may influence amyloid-beta immunotherapy and microglial function in mouse models of Alzheimer's disease (AD). This research has broad implications for unraveling the role meningeal lymphatics may play in regulating immunity in the brain during AD pathology and treatment.


Assuntos
Doença de Alzheimer , Vasos Linfáticos , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Imunoterapia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Meninges/metabolismo , Meninges/patologia , Camundongos , Camundongos Transgênicos
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502395

RESUMO

Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood-brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.


Assuntos
Neuroimunomodulação/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Animais , Transporte Biológico , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Homeostase , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunidade , Leucócitos , Linfangiogênese , Vasos Linfáticos , Neuroimunomodulação/fisiologia
12.
Front Cell Neurosci ; 15: 683676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248503

RESUMO

The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.

13.
Brain Behav Immun ; 84: 80-89, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765789

RESUMO

In humans, excessive gestational weight gain during pregnancy is associated with an increased risk for executive function deficits in the offspring. Our previous work has confirmed this finding in mice, as offspring from dams fed a 60% high fat (HF) diet during breeding, gestation, and lactation demonstrate impulsive-like behavior in the 5 choice serial reaction time task (5CSRTT). Because the prefrontal cortex (PFC), which plays a key role in executive function, undergoes substantial postnatal adolescent pruning and microglia are actively involved in synaptic refinement, we hypothesized that microglia may play a role in mediating changes in brain development after maternal HF diet, with a specific focus on microglial activity during adolescence. Therefore, we treated male and female offspring from HF or control diet (CD) dams with PLX3397-formulated diet (PLX) to ablate microglia during postnatal days 23-45. After PLX removal and microglial repopulation, adult mice underwent testing to evaluate executive function. Adolescent PLX treatment did increase the control male dropout rate in learning the basic FR1 task, but otherwise had a minimal effect on behavior in control offspring. In males, HF offspring learned faster and performed better on a simple operant task (fixed ratio 1) without an effect of PLX. However, in HF offspring this increase in FR1 responding was associated with more impulsive errors in the 5CSRTT while PLX eliminated this association and decreased impulsive errors specifically in HF offspring. This suggests that adolescent PLX treatment improves executive function and particularly impulsive behavior in adult male HF offspring, without an overall effect of perinatal diet. In females, maternal HF diet impaired reversal learning but PLX had no effect on performance. We then measured gene expression in adult male PFC, nucleus accumbens (NAC), and amygdala (AMG), examining targets related to synaptic function, reward, and inflammation. Maternal HF diet increased PFC synaptophysin and AMG psd95 expression. PFC synaptophysin expression was correlated with more impulsive errors in the 5CSRTT in the HF offspring only and PLX treatment eliminated this correlation. These data suggest that adolescent microglia may play a critical role in mediating executive function after perinatal high fat diet in males.


Assuntos
Envelhecimento , Dieta Hiperlipídica/efeitos adversos , Função Executiva/efeitos dos fármacos , Microglia/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Tonsila do Cerebelo , Animais , Feminino , Lactação , Masculino , Camundongos , Núcleo Accumbens , Córtex Pré-Frontal , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA