Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718699

RESUMO

The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an "Out-of-Italy" expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.


Assuntos
Lagartos , Metagenômica , Animais , DNA Mitocondrial/genética , Variação Genética , Lagartos/genética , Filogenia , Filogeografia
2.
J Evol Biol ; 34(1): 73-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32671913

RESUMO

The amphi-boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans-Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter-oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans-Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter-oceanic affinities and dispersal histories. For a general view on the trans-Arctic dynamics and of the roles of potential dispersal-vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi-boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter-oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene-Pleistocene-Holocene time frame. Repeated inter-oceanic exchange was inferred for 23 taxa, and the latest connection was usually post-glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late- or post-glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter-oceanic vicariance scenario underlying amphi-boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.


Assuntos
Distribuição Animal , Peixes/genética , Especiação Genética , Camada de Gelo , Invertebrados/genética , Animais , Regiões Árticas , Fósseis , Oceanos e Mares , Filogeografia
3.
Ecol Evol ; 10(20): 10986-11005, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144943

RESUMO

Explaining the evolutionary origin and maintenance of color polymorphisms is a major challenge in evolutionary biology. Such polymorphisms are commonly thought to reflect the existence of alternative behavioral or life-history strategies under negative frequency-dependent selection. The European common wall lizard Podarcis muralis exhibits a striking ventral color polymorphism that has been intensely studied and is often assumed to reflect alternative reproductive strategies, similar to the iconic "rock-paper-scissors" system described in the North American lizard Uta stansburiana. However, available studies so far have ignored central aspects in the behavioral ecology of this species that are crucial to assess the existence of alternative reproductive strategies. Here, we try to fill this gap by studying the social behavior, space use, and reproductive performance of lizards showing different color morphs, both in a free-ranging population from the eastern Pyrenees and in ten experimental mesocosm enclosures. In the natural population, we found no differences between morphs in site fidelity, space use, or male-female spatial overlap. Likewise, color morph was irrelevant to sociosexual behavior, space use, and reproductive success within experimental enclosures. Our results contradict the commonly held hypothesis that P. muralis morphs reflect alternative behavioral strategies, and suggest that we should instead turn our attention to alternative functional explanations.

4.
Evolution ; 74(7): 1289-1300, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32396671

RESUMO

Hybrid zones provide insights into the evolution of reproductive isolation. Sexual selection can contribute to the evolution of reproductive barriers, but it remains poorly understood how sexual traits impact gene flow in secondary contact. Here, we show that a recently evolved suite of sexual traits that function in male-male competition mediates gene flow between two lineages of wall lizards (Podarcis muralis). Gene flow was relatively low and asymmetric in the presence of exaggerated male morphology and coloration compared to when the lineages share the ancestral phenotype. Putative barrier loci were enriched in genomic regions that were highly differentiated between the two lineages and showed low concordance between the transects. The exception was a consistently low genetic exchange around ATXN1, a gene that modulates social behavior. We suggest that this gene may contribute to the male mate preferences that are known to cause lineage-assortative mating in this species. Although female choice modulates the degree of reproductive isolation in a variety of taxa, wall lizards demonstrate that both male-male competition and male mate choice can contribute to the extent of gene flow between lineages.


Assuntos
Ataxina-1/genética , Fluxo Gênico , Introgressão Genética , Lagartos/genética , Isolamento Reprodutivo , Animais , Comportamento Competitivo , Feminino , Especiação Genética , Masculino , Modelos Genéticos , Fenótipo , Caracteres Sexuais , Seleção Sexual
5.
Mol Ecol ; 27(21): 4213-4224, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30192998

RESUMO

Strongly selected characters can be transferred from one lineage to another with limited genetic exchange, resulting in asymmetric introgression and a mosaic genome in the receiving population. However, systems are rarely sufficiently well studied to link the pattern of introgression to its underlying process. Male common wall lizards in western Italy exhibit exaggeration of a suite of sexually selected characters that make them outcompete males from a distantly related lineage that lack these characters. This results in asymmetric hybridization and adaptive introgression of the suite of characters following secondary contact. We developed genomewide markers to infer the demographic history of gene flow between different genetic lineages, identify the spread of the sexually selected syndrome, and test the prediction that introgression should be asymmetric and heterogeneous across the genome. Our results show that secondary contact was accompanied by gene flow in both directions across most of the genome, but with approximately 3% of the genome showing highly asymmetric introgression in the predicted direction. Demographic simulations reveal that this asymmetric gene flow is more recent than the initial secondary contact, and the data suggest that the exaggerated male sexual characters originated within the Italian lineage and subsequently spread throughout this lineage before eventually reaching the contact zone. These results demonstrate that sexual selection can cause a suite of characters to spread throughout both closely and distantly related lineages with limited gene flow across the genome at large.


Assuntos
Fluxo Gênico , Genética Populacional , Lagartos/genética , Seleção Genética , Animais , Feminino , Marcadores Genéticos , Geografia , Itália , Masculino , Modelos Genéticos , Fenótipo
6.
BMC Evol Biol ; 13: 67, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23510113

RESUMO

BACKGROUND: The relationships between North Atlantic and North Pacific faunas through times have been controlled by the variation of hydrographic circumstances in the intervening Arctic Ocean and Bering Strait. We address the history of trans-Arctic connections in a clade of amphi-boreal pelagic fishes using genealogical information from mitochondrial DNA sequence data. The Pacific and Atlantic herrings (Clupea pallasii and C. harengus) have basically vicarious distributions in the two oceans since pre-Pleistocene times. However, remote populations of C. pallasii are also present in the border waters of the North-East Atlantic in Europe. These populations show considerable regional and life history differentiation and have been recognized in subspecies classification. The chronology of the inter-oceanic invasions and genetic basis of the phenotypic structuring however remain unclear. RESULTS: The Atlantic and Pacific herrings both feature high mtDNA diversities (large long-term population sizes) in their native basins, but an ocean-wide homogeneity of C. harengus is contrasted by deep east-west Pacific subdivision within Pacific C. pallasii. The outpost populations of C. pallasii in NE Europe are identified as members of the western Pacific C. pallasii clade, with some retained inter-oceanic haplotype sharing. They have lost diversity in colonization bottlenecks, but have also thereafter accumulated abundant new variation. The data delineate three phylogeographic groups within the European C. pallasii: herring from the inner White Sea; herring from the Mezen and Chesha Bays; and a strongly bottlenecked peripheral population in Balsfjord of the Norwegian Sea. CONCLUSIONS: The NE European outposts of C. pallasii are judged to be early post-glacial colonists from the NW Pacific. A strong regional substructure has evolved since that time, in contrast to the apparent broad-scale uniformity maintained by herrings in their native basins. The structure only partly matches the previous biological concepts based on seasonal breeding stocks or geographical subspecies designations. The trans-Arctic herring phylogeography is notably similar to those of the amphi-boreal mollusk taxa Macoma and Mytilus, suggesting similar histories of inter-oceanic connections. We also considered the time dependency of molecular rates, critical for interpreting timing of relatively recent biogeographical events, by comparing the estimates from coding and non-coding mitochondrial regions of presumably different mutation dynamics.


Assuntos
Peixes/classificação , Peixes/genética , Filogeografia , Animais , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , Mar do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA