Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecol Evol ; 11(20): 13773-13779, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707816

RESUMO

Greater flamingos use cosmetic coloration by spreading uropygial secretions pigmented with carotenoids over their feathers, which makes the plumage redder. Because flamingos inhabit open environments that receive direct solar radiation during daytime, and carotenoids bleach when exposed to solar radiation, we expected that the plumage color would fade if there is no maintenance for cosmetic purposes. Here, we show that the concentrations of pigments inside feathers and on the surface of feathers were correlated, as well as that there was a correlation between the concentrations of pigments in the uropygial secretions and on the surface of feathers. There was fading in color (becoming less red) in feathers that received direct solar radiation when there was no plumage maintenance, but not so in others maintained in darkness. When we controlled for the initial color of feathers, the feathers of those individuals with higher concentration of pigments on the feather surfaces were those that lost less coloration after experimental exposure of feathers to sunny conditions. These results indicate that exposure to sunlight is correlated with the fading of feather color, which suggests that individuals need to regularly apply makeup to be more colorful. These results also reinforce the view that these birds use cosmetic coloration as a signal amplifier of plumage color. This may be important in species using highly variable habitats, such as wetlands, since the conditions experienced when molting may differ from those when the signal should be functional, usually months after molting.

2.
Sci Rep ; 10(1): 11670, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669670

RESUMO

Parasites alter many traits of their hosts. In particular, parasites known as "manipulative" may increase their probability of transmission by inducing phenotypic alterations in their intermediate hosts. Although parasitic-induced alterations can modify species' ecological roles, the proximate factors modulating this phenomenon remain poorly known. As temperature is known to affect host-parasite associations, understanding its precise impact has become a major challenge in a context of global warming. Gammarids are ecologically important freshwater crustaceans and serve as intermediate hosts for several acanthocephalan species. These parasites induce multiple effects on gammarids, including alterations of their behavior, ultimately leading to modifications in their functional role. Here, experimental infections were used to assess the effect of two temperatures on several traits of the association between Gammarus pulex and its acanthocephalan parasite Pomphorhynchus laevis. Elevated temperature affected hosts and parasites in multiple ways (decreased host survival, increased gammarids activity, faster parasites development and proboscis eversion). However, behavioral manipulation was unaffected by temperature. These results suggest that predicted change in temperature may have little consequences on the trophic transmission of parasites through changes in manipulation, although it may modify it through increased infection success and faster parasites development.


Assuntos
Acantocéfalos/fisiologia , Anfípodes/parasitologia , Comportamento Animal , Interações Hospedeiro-Parasita , Animais , França , Longevidade , Masculino , Temperatura
3.
Int J Parasitol ; 49(10): 805-817, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31348961

RESUMO

Parasitism is an important process in ecosystems, but has been largely neglected in ecosystem research. However, parasites are involved in most trophic links in food webs with, in turn, a major role in community structure and ecosystem processes. Several studies have shown that higher nutrient availability in ecosystems tends to increase the prevalence of parasites. Yet, most of these studies focused on resource availability, whereas studies investigating resource quality remain scarce. In this study, we tested the impact of the quality of host food resources on infection by parasites, as well as on the consequences for the host. Three resources were used to individually feed Gammarus pulex (Crustacea: Amphipoda) experimentally infected or not infected with the acanthocephalan species Pomphorhynchus laevis: microbially conditioned leaf litter without phosphorus input (standard resource); microbially conditioned leaf litter enriched in phosphorus; and microbially conditioned leaf litter without phosphorus input but complemented with additional inputs of benthic diatoms rich in both phosphorus and eicosapentaenoic acid. During the 110 day experiment, infection rate, parasite load, host survival, and parasite-mediated behavioral traits implicated in trophic transmission were measured (refuge use, geotaxis and locomotor activity). The resources of higher quality, regardless of the infection status, reduced gammarid mortality and increased gammarid growth. In addition, higher quality resources increased the proportion of infected gammarids, and led to more cases of multi-infections. While slightly modifying the geotaxis behavior of uninfected gammarids, resource quality did not modulate the impact of parasites on host behavior. Finally, for most parameters, consumption of algal resources had a greater impact than did phosphorus-enriched leaf litter. Therefore, manipulation of resource quality significantly affected host-parasite relationships, which stressed the need for future research to investigate in natura the relationships between resource availability, resource quality and parasite prevalence.


Assuntos
Acantocéfalos/crescimento & desenvolvimento , Anfípodes/parasitologia , Abastecimento de Alimentos/normas , Animais , Ecossistema , Feminino , Interações Hospedeiro-Parasita , Estimativa de Kaplan-Meier , Locomoção , Masculino , Carga Parasitária , Análise de Regressão , Rios , Fatores de Tempo , Gravação em Vídeo
4.
Sci Rep ; 8(1): 17479, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504923

RESUMO

Animal personality, defined as consistent differences among individuals in their behaviour, is being increasingly studied as it might lead to a new understanding of the evolution of behaviours. Despite a clear interest in studying personality in a wide range of taxa for comparative analyses, studies on invertebrates are still scarce. Here, we investigated the personality of a ground beetle, Nebria brevicollis, which is widespread in Europe and invasive in North America. We measured seven behavioural traits from an array of three different tests: (i) activity and exploration related traits; (ii) reaction to a threat, and (iii) phototaxis. The repeatability was tested by measuring all behaviours twice, on different days. All behavioural traits were consistent through time, highlighting the presence of personality in the beetle. In addition, we analysed the relationship between the different traits and highlighted two clusters of behaviours (behavioural syndrome), one grouping activity, exploration and boldness traits, and a second one consisting of responses to a threat. This study is the first to our knowledge to provide evidence for personality dimensions within the vast group of the Carabidae. It also constitutes a preliminary step in the experimental investigation of the importance of animal personality in invasive species.


Assuntos
Comportamento Animal/fisiologia , Besouros/fisiologia , Espécies Introduzidas , Animais
5.
Insects ; 9(2)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925806

RESUMO

Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are widely used as biological agents against various insect pests and represent a promising alternative to replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding of their biology and ecology. Many endogenous and environmental factors influence the survival of nematodes following application, as well as their transmission success to the target species. The aim of this paper is to give an overview of the major topics currently considered to affect transmission success of these biological control agents, including interactions with insects, plants and other members of the soil biota including conspecifics.

6.
Biol Bull ; 232(2): 82-90, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28654335

RESUMO

Understanding the effect of temperature on ecologically important species has become a major challenge in the context of global warming. However, the consequences of climate change cannot be accurately predicted without taking into consideration biotic interactions. Parasitic infection, in particular, constitutes a widespread biotic interaction, and parasites impact their hosts in multiple ways, eventually leading to consequences for communities and ecosystems. We explored the effect of temperature on the anti-predator behavior of a keystone freshwater invertebrate, the amphipod Gammarus fossarum. Gammarids regularly harbor manipulative acanthocephalan parasites that modify their anti-predator behavior in ways that potentially increase the probability of trophic transmission to their definitive hosts. We investigated the impact of temperature on gammarids infected by two acanthocephalan parasites, Pomphorhynchus tereticollis and Polymorphus minutus. Uninfected and naturally infected gammarids were acclimatized to different temperatures, and their behavior was measured. Our results showed that the effect of infection on the phototaxis of gammarids increased with increasing temperature, with a stronger effect induced by P. tereticollis. In contrast, temperature had no effect on the alteration of refuge use or geotaxis observed in infected gammarids. Our results provide the first direct evidence that temperature can affect the extent of behavioral alteration brought about by certain parasite species. However, the consequences of increased trophic transmission remain elusive; the supposedly key anti-predatory behavior was not significantly affected by exposure of gammarids to different temperatures.


Assuntos
Acantocéfalos/fisiologia , Anfípodes/parasitologia , Comportamento Animal/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Temperatura , Animais , Mudança Climática , Especificidade da Espécie
7.
Dev Comp Immunol ; 76: 25-33, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28522173

RESUMO

Temperature is known to impact host-parasite interactions in various ways. Such effects are often regarded as the consequence of the increased metabolism of parasites with increasing temperature. However, the effect of temperature on hosts' immune system could also be a determinant. Here we assessed the influence of temperature on the immunocompetence of the crustacean amphipod Gammarus pulex. Amphipods play a key ecological role in freshwater ecosystems that can be altered by several parasites. We investigated the consequences of three weeks of acclimatization at four temperatures (from 9 °C to 17 °C) on different immunological parameters. Temperature influenced both hemocyte concentration and active phenoloxidase enzymatic activity, with lower values at intermediate temperatures, while total phenoloxidase activity was not affected. In addition, the ability of gammarids to clear a bacterial infection was at the highest at intermediate temperatures. These results suggest a dysregulation of the immune system of gammarids in response to stress induced by extreme temperature.


Assuntos
Anfípodes/imunologia , Crustáceos/imunologia , Estresse Fisiológico/imunologia , Animais , Ecossistema , Hemócitos/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunocompetência/imunologia , Monofenol Mono-Oxigenase/imunologia , Temperatura
8.
Glob Chang Biol ; 23(4): 1415-1424, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27591398

RESUMO

Climate change can have critical impacts on the ecological role of keystone species, leading to subsequent alterations within ecosystems. The consequences of climate change may be best predicted by understanding its interaction with the cumulative effects of other stressors, although this approach is rarely adopted. However, whether this interaction is additive or interactive can hardly be predicted from studies examining a single factor at a time. In particular, biotic interactions are known to induce modifications in the functional role of many species. Here, we explored the effect of temperature on leaf consumption by a keystone freshwater shredder, the amphipod Gammarus fossarum. This species is found at high densities in the wild and relies on aggregation as an antipredator behavior. In addition, gammarids regularly harbor acanthocephalan parasites that are known to induce multiple effects on their hosts, including modifications on their functional role. We thus assessed the cumulative effect of both intraspecific interactions and parasitism. Consumption tests were conducted on gammarids, either naturally infected with Pomphorhynchus tereticollis or uninfected, feeding alone or in groups. Our results show that increased temperatures induced a significant increase in consumption, but only to a certain extent. Interestingly, consumption at the highest temperature depended on amphipod density: Whereas a decrease was observed for single individuals, no such effect on feeding was observed for individuals in groups. In addition, infection by acanthocephalan parasites per se significantly negatively impacted the shredding role of gammarids. Overall, the combined effects of parasitism and temperature appeared to be additive. Thus, future studies focusing on the impact of climate change on the functional role of keystone species may benefit from a multimodal approach under realistic conditions to derive accurate predictions.


Assuntos
Anfípodes/parasitologia , Mudança Climática , Interações Hospedeiro-Parasita , Acantocéfalos , Animais , Ecossistema , Parasitos , Temperatura
9.
Parasit Vectors ; 8: 403, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223476

RESUMO

BACKGROUND: Several parasites with complex life-cycles induce phenotypic alterations in their intermediate hosts. According to the host manipulation hypothesis, such phenotypic alterations are supposed to increase the fitness of the parasite at the expense of that of its intermediate hosts through increasing the probability of transmission to next hosts. Although the phenomenon has received a large attention, the proximate factors modulating the occurrence and intensity of host manipulation remain poorly known. It has however, been suggested that the amount of energy reserves in the intermediate host might be a key parameter, although its precise influence on the intensity of manipulation remains unclear. Dietary depletion in the host may also lead to compromise with other parasite traits, such as probability of establishing or growth or virulence. METHODS: Here, we address the question through performing experimental infections of the freshwater amphipod Gammarus pulex with two different populations of the acanthocephalan fish parasite Pomphorhynchus laevis, and manipulation of host nutritional condition. Following exposure, gammarids were given either a "standard" diet (consisting of elm leaves and chironomid larvae) or a "deprived" food treatment (deprived in proteins), and infection parameters were recorded. Once parasites reached the stage at which they become infective to their definitive host, refuge use (a behavioural trait presumably implied in trophic transmission) was assessed, and metabolic rate was measured. RESULTS: Infected gammarids exposed to the deprived food treatment showed a lower metabolic rate, indicative of a lower body condition, compared to those exposed to the standard food treatment. Parasite size was smaller, and, depending on the population of origin of the parasites, intensity of infection was lower or mortality was higher in deprived hosts. However, food treatment had no effect on either the timing or intensity of behavioural modifications. CONCLUSIONS: Overall, while our results suggest that acanthocephalan parasites develop better in hosts in good condition, no evidence was found for an influence of host nutritional condition on host manipulation by parasites.


Assuntos
Acantocéfalos , Anfípodes , Doenças dos Peixes/parasitologia , Helmintíase Animal/parasitologia , Estado Nutricional , Doenças Parasitárias em Animais/parasitologia , Acantocéfalos/genética , Anfípodes/genética , Animais , Comportamento Animal , Metabolismo Energético , Feminino , Peixes , Masculino , Especificidade da Espécie
10.
Int J Parasitol Parasites Wildl ; 4(3): 442-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26835252

RESUMO

Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the expense of that of their hosts, a phenomenon known as "host manipulation". Host manipulation can have important consequences, ranging from host population dynamics to ecosystem engineering. So far, the importance of environmental changes for host manipulation has received little attention. However, because manipulative parasites are embedded in complex systems, with many interacting components, changes in the environment are likely to affect those systems in various ways. Here, after reviewing the ecological importance of manipulative parasites, we consider potential causes and consequences of changes in host manipulation by parasites driven by environmental modifications. We show that such consequences can extend to trophic networks and population dynamics within communities, and alter the ecological role of manipulative parasites such as their ecosystem engineering. We suggest that taking them into account could improve the accuracy of predictions regarding the effects of global change. We also propose several directions for future studies.

11.
J Exp Biol ; 217(Pt 20): 3700-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320270

RESUMO

Most studies analyzing the effects of global warming on wild populations focus on gradual temperature changes, yet it is also important to understand the impact of extreme climatic events. Here we studied the effect of two cold spells (January 1985 and February 2012) on the energetics of greater flamingos (Phoenicopterus roseus) in the Camargue (southern France). To understand the cause of observed flamingo mass mortalities, we first assessed the energy stores of flamingos found dead in February 2012, and compared them with those found in other bird species exposed to cold spells and/or fasting. Second, we evaluated the monthly energy requirements of flamingos across 1980-2012 using the mechanistic model Niche Mapper. Our results show that the body lipids of flamingos found dead in 2012 corresponded to 2.6±0.3% of total body mass, which is close to results found in woodcocks (Scolopax rusticola) that died from starvation during a cold spell (1.7±0.1%), and much lower than in woodcocks which were fed throughout this same cold spell (13.0±2%). Further, Niche Mapper predicted that flamingo energy requirements were highest (+6-7%) during the 1985 and 2012 cold spells compared with 'normal' winters. This increase was primarily driven by cold air temperatures. Overall, our findings strongly suggest that flamingos starved to death during both cold spells. This study demonstrates the relevance of using mechanistic energetics modelling and body condition analyses to understand and predict the impact of extreme climatic events on animal energy balance and winter survival probabilities.


Assuntos
Aves/fisiologia , Temperatura Baixa/efeitos adversos , Metabolismo Energético , Inanição/mortalidade , Animais , Aves/metabolismo , Charadriiformes/metabolismo , Charadriiformes/fisiologia , Clima , França , Lipídeos/análise , Modelos Biológicos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA