Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Psychiatry ; 80(10): 743-753, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318500

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. METHODS: Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. RESULTS: We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. CONCLUSIONS: Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction.


Assuntos
Disfunção Cognitiva/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Função Executiva/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Reversão de Aprendizagem/fisiologia , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/fisiopatologia , RNA Mensageiro/metabolismo , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA