Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hydrogeol J ; 27(4): 1363-1371, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31933539

RESUMO

A case study is presented that implements two numerical models for simulating a 30-year PAT operation conducted at a large contaminated site for which high-resolution data sets are available. A Markov chain based stochastic method is used to conditionally generate the realizations with random distribution of heterogeneity for the Tucson International Airport Area (TIAA) federal Superfund site. The fields were conditioned to data collected for 245 boreholes drilled at the site. Both MT3DMS and the advanced random walk particle method (RWhet) were used to simulate the PAT-based mass removal process. The results show that both MT3DMS and RWhet represent the measured data reasonably, with Root Mean Square Error (RMSE) less than 0.03. The use of fine grids and the total-variation-diminishing method (TVD) limited the effects of numerical dispersion for MT3DMS. However, the effects of numerical dispersion were observed when compared to the simulations produced with RWhet using a larger number of particles, which provided more accurate results with RMSE diminishing from 0.027 to 0.024 to 0.020 for simulations with 1, 20, and 50 particles. The computational time increased with more particles used in the model, but was still much less than the time required for MT3DMS, which is an advantage of RWhet. By showing the results using both methods, this study provides guidance for simulating long-term PAT systems. This work will lead to improve understanding of contaminant transport and plume persistence, and in turn will enhance site characterization and site management for contaminated sites with large plumes.

2.
Environ Sci Technol ; 42(13): 4837-43, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18678014

RESUMO

Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.


Assuntos
Água Doce/química , Hélio/análise , Modelos Químicos , Trítio/análise , Movimentos da Água , Fatores Etários , Isótopos
3.
Environ Sci Technol ; 41(19): 6822-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969701

RESUMO

Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.


Assuntos
Éteres Metílicos/química , Poluentes do Solo/química , terc-Butil Álcool/química , Gasolina , Volatilização
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 2): 026706, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17025566

RESUMO

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the governing equation (also called the multiscaling fractional diffusion equation), based on fractional flux and fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing measure, using a streamline-projection technique. In this and other general cases, the random walk method is the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the flexibility, simplicity, and efficiency of the random walk method.

5.
Ground Water ; 41(2): 238-46, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12656290

RESUMO

Development of the finite-element-based Integrated Groundwater and Surface-Water Model (IGSM) began in the 1970s. Its popularity grew in the early 1990s with its application to California's Central Valley Groundwater Surface-Water Model in support of the Central Valley Project Improvement Act. Since that time, IGSM has been applied by federal, state, and local agencies to model a number of major basins in California. Our review of the recently released version 5.0 of IGSM reveals a solution methodology that deviates from established solution techniques, potentially compromising its reliability under many circumstances. One difficulty occurs because of the semi-explicit time discretization used. Combined with the fixed monthly time step of IGSM, this approach can prevent applications from accurately converging when using parameter values typically found in nature. Additionally, IGSM fails to properly couple and simultaneously solve ground water and surface water models with appropriate mass balance and head convergence under the reasonable conditions considered herein. As a result, IGSM-predicted streamflow is error prone, and errors could exceed 100%. IGSM does not inform the user that there may be a convergence problem with the solution, but instead generally reports good mass balance. Although our review touches on only a few aspects of the code, which exceeds 17,000 lines, our experience is that similar problems arise in other parts of IGSM. Review and examples demonstrate the potential consequences of using the solution methods in IGSM for the prediction, planning, and management of water resources, and provide perspective on the roles of standards and code validation in ground water modeling.


Assuntos
Modelos Teóricos , Solo , Movimentos da Água , Abastecimento de Água , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA