Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 26(6): 2130-45, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507992

RESUMO

Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.


Assuntos
AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator 2 de Liberação do Nucleotídeo Guanina/genética , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Camundongos , Células PC12 , Transporte Proteico , RNA Interferente Pequeno , Ratos , Células Tumorais Cultivadas
2.
J Cell Sci ; 117(Pt 25): 6085-94, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15546918

RESUMO

Recent studies suggest that the tyrosine kinase Src plays an important role in the hormonal regulation of extracellular signal-regulated kinases (ERKs) via cyclic AMP (cAMP). Src has also been proposed to mediate signals downstream of nerve growth factor (NGF). Here, we report that the cAMP-dependent protein kinase A (PKA) induced the phosphorylation of Src at residue serine17 (S17) in multiple cell types including PC12, Hek293, AtT-20 and CHO cells. In PC12 cells, Src phosphorylation on S17 participates in the activation of the small G protein Rap1 by both cAMP and NGF. In these cells, Rap1 is required for cAMP/PKA signaling to ERKs and also for the sustained activation of ERKs by NGF. The activation of Rap1 by both cAMP and NGF was blocked by PP2, an inhibitor of Src family kinases, and by a Src mutant incapable of being phosphorylated by PKA (SrcS17A), consistent with the requirement of PKA phosphorylation of Src at S17 in these actions. PP2 and SrcS17A also inhibited the Rap1-dependent activation of ERKs by both agents. These results strongly indicate that PKA phosphorylation of Src at S17 is essential for cAMP and NGF signaling in PC12 cells and identify PKA as an important downstream target of NGF. PKA phosphorylation of Src may therefore be required for Rap1 activation in PC12 cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fator de Crescimento Neural/metabolismo , Serina/química , Proteínas rap1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Western Blotting , Células CHO , Linhagem Celular , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunoprecipitação , Neurônios/metabolismo , Células PC12 , Fosforilação , Plasmídeos/metabolismo , Ratos , Transdução de Sinais , Fatores de Tempo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA