Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
JAMA Neurol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619853

RESUMO

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

2.
Neurology ; 101(14): e1412-e1423, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37580158

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype. METHODS: We applied 2 strategies in the Florida Autopsied Multi-Ethnic (FLAME) cohort to evaluate a neuropathologic proxy for the minimal atrophy subtype. In the first strategy, we selected AD cases with a Braak tangle stage IV (Braak IV) because of the relative paucity of neocortical tangle involvement compared with Braak >IV. Braak IV cases were compared with the 3 AD subtypes. In the alternative strategy, typical AD was stratified by brain weight and cases having a relatively high brain weight (>75th percentile) were defined as minimal atrophy. RESULTS: Braak IV cases (n = 37) differed from AD subtypes (limbic predominant [n = 174], typical [n = 986], and hippocampal sparing [n = 187] AD) in having the least years of education (median 12 years, group-wise p < 0.001) and the highest brain weight (median 1,140 g, p = 0.002). Braak IV cases most resembled the limbic predominant cases owing to their high proportion of APOE ε4 carriers (75%, p < 0.001), an amnestic syndrome (100%, p < 0.001), as well as older age of cognitive symptom onset and death (median 79 and 85 years, respectively, p < 0.001). Only 5% of Braak IV cases had amygdala-predominant Lewy bodies (the lowest frequency observed, p = 0.017), whereas 32% had coexisting pathology of Lewy body disease, which was greater than the other subtypes (p = 0.005). Nearly half (47%) of the Braak IV samples had coexisting limbic predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathologic change. Cases with a high brain weight (n = 201) were less likely to have amygdala-predominant Lewy bodies (14%, p = 0.006) and most likely to have Lewy body disease (31%, p = 0.042) compared with those with middle (n = 455) and low (n = 203) brain weight. DISCUSSION: The frequency of Lewy body disease was increased in both neuropathologic proxies of the minimal atrophy subtype. We hypothesize that Lewy body disease may underlie cognitive decline observed in minimal atrophy cases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/patologia , Estudos Retrospectivos , Doença por Corpos de Lewy/patologia , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Atrofia/patologia
3.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327267

RESUMO

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudos Transversais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inibidor da Proteína C/metabolismo
4.
Elife ; 112022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36541708

RESUMO

The discovery of meningeal lymphatic vessels that drain the CNS has prompted new insights into how immune responses develop in the brain. In this study, we examined how T cell responses against CNS-derived antigen develop in the context of infection. We found that meningeal lymphatic drainage promotes CD4+ and CD8+ T cell responses against the neurotropic parasite Toxoplasma gondii in mice, and we observed changes in the dendritic cell compartment of the dural meninges that may support this process. Indeed, we found that mice chronically, but not acutely, infected with T. gondii exhibited a significant expansion and activation of type 1 and type 2 conventional dendritic cells (cDC) in the dural meninges. cDC1s and cDC2s were both capable of sampling cerebrospinal fluid (CSF)-derived protein and were found to harbor processed CSF-derived protein in the draining deep cervical lymph nodes. Disrupting meningeal lymphatic drainage via ligation surgery led to a reduction in CD103+ cDC1 and cDC2 number in the deep cervical lymph nodes and caused an impairment in cDC1 and cDC2 maturation. Concomitantly, lymphatic vessel ligation impaired CD4+ and CD8+ T cell activation, proliferation, and IFN-γ production at this site. Surprisingly, however, parasite-specific T cell responses in the brain remained intact following ligation, which may be due to concurrent activation of T cells at non-CNS-draining sites during chronic infection. Collectively, our work reveals that CNS lymphatic drainage supports the development of peripheral T cell responses against T. gondii but remains dispensable for immune protection of the brain.


Assuntos
Toxoplasma , Camundongos , Animais , Encéfalo/metabolismo , Meninges/patologia , Linfócitos T CD8-Positivos , Controle de Doenças Transmissíveis
5.
J Alzheimers Dis ; 90(1): 405-417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213996

RESUMO

BACKGROUND: Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE: Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS: Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS: Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION: Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-ß plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Doença da Artéria Coronariana , Diabetes Mellitus , Neoplasias , Doenças do Sistema Nervoso , Feminino , Humanos , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/patologia , Neuropatologia , Placa Amiloide/patologia , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/patologia , Apolipoproteínas E , Diabetes Mellitus/epidemiologia , Comorbidade , Neoplasias/epidemiologia
6.
PLoS Pathog ; 18(9): e1010637, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067217

RESUMO

Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to "disease-associated microglia" (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states.


Assuntos
Encefalite , Fator de Transcrição STAT1 , Toxoplasma , Toxoplasmose Cerebral , Animais , Encéfalo/patologia , Encefalite/metabolismo , Encefalite/patologia , Camundongos , Microglia/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Toxoplasma/metabolismo , Toxoplasmose Cerebral/metabolismo
7.
Alzheimers Dement ; 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920592

RESUMO

INTRODUCTION: Alzheimer's disease (AD) biomarkers are increasingly more reliable in predicting neuropathology. To facilitate interpretation of phosphorylated tau sites as an early fluid biomarker, we sought to characterize which neurofibrillary tangle maturity levels (pretangle, intermediary 1, mature tangle, intermediary 2, and ghost tangle) are recognized. METHODS: We queried the Florida Autopsied Multi-Ethnic (FLAME) cohort for cases ranging from Braak stages I through VI, excluding non-AD neuropathologies and tauopathies. Thioflavin-S staining was compared to immunohistochemical measures of phosphorylated threonine (pT) 181, pT205, pT217, and pT231 in two hippocampal subsectors across n = 24 cases. RESULTS: Each phosphorylated tau site immunohistochemically labeled early neurofibrillary tangle maturity levels compared to advanced levels recognized by thioflavin-S. Hippocampal burden generally increased with each Braak stage. DISCUSSION: These results provide neurobiologic evidence that these phosphorylated tau fluid biomarker sites are present during early neurofibrillary tangle maturity levels and may explain why these fluid biomarker measures are observed before symptom onset. HIGHLIGHTS: Immunohistochemical evaluation of four phosphorylated tau fluid biomarker sites. Earlier neurofibrillary tangle maturity levels recognized by phosphorylated tau in proline-rich region. Advanced tangle pathology is elevated in the subiculum compared to the cornu ammonis 1 of the hippocampus. Novel semi-quantitative frequency to calculate tangle maturity frequency.

8.
Acta Neuropathol ; 144(6): 1117-1125, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35841412

RESUMO

Summarizing the multiplicity and heterogeneity of cerebrovascular disease (CVD) features into a single measure has been difficult in both neuropathology and imaging studies. The objective of this work was to evaluate the association between neuroimaging surrogates of CVD and two available neuropathologic CVD scales in those with both antemortem imaging CVD measures and postmortem CVD evaluation. Individuals in the Mayo Clinic Study of Aging with MRI scans within 5 years of death (N = 51) were included. Antemortem CVD measures were computed from diffusion MRI (dMRI), FLAIR, and T2* GRE imaging modalities and compared with postmortem neuropathologic findings using Kalaria and Strozyk Scales. Of all the neuroimaging measures, both regional and global dMRI measures were associated with Kalaria and Strozyk Scales (p < 0.05) and modestly correlated with global cognitive performance. The major conclusions from this study were: (i) microstructural white matter injury measurements using dMRI may be meaningful surrogates of neuropathologic CVD scales, because they aid in capturing diffuse (and early) changes to white matter and secondary neurodegeneration due to lesions; (ii) vacuolation in the corpus callosum may be associated with white matter changes measured on antemortem dMRI imaging; (iii) Alzheimer's disease neuropathologic change did not associate with neuropathologic CVD scales; and (iv) future work should be focused on developing better quantitative measures utilizing dMRI to optimally assess CVD-related neuropathologic changes.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Substância Branca , Humanos , Neuropatologia , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Substância Branca/patologia , Transtornos Cerebrovasculares/complicações , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
9.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697880

RESUMO

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças do Sistema Nervoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Amiloide , Autopsia , Proteínas de Ligação a DNA , Humanos , Masculino , Placa Amiloide/patologia
10.
Nat Commun ; 12(1): 2311, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875655

RESUMO

Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


Assuntos
Doença de Alzheimer/genética , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica/métodos , Hipocampo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Autopsia , Córtex Cerebral/patologia , Feminino , Hipocampo/patologia , Humanos , Aprendizado de Máquina , Masculino , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Inibidor da Proteína C/genética , Inibidor da Proteína C/metabolismo , RNA-Seq/métodos , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Ann Neurol ; 88(5): 1009-1022, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869362

RESUMO

OBJECTIVE: To examine associations between tau and amyloid ß (Aß) molecular positron emission tomography (PET) and both Alzheimer-related pathology and 4-repeat tau pathology in autopsy-confirmed frontotemporal lobar degeneration (FTLD). METHODS: Twenty-four patients had [18 F]-flortaucipir-PET and died with FTLD (progressive supranuclear palsy [PSP], n = 10; corticobasal degeneration [CBD], n = 10; FTLD-TDP, n = 3; and Pick disease, n = 1). All but 1 had Pittsburgh compound B (PiB)-PET. Braak staging, Aß plaque and neurofibrillary tangle counts, and semiquantitative tau lesion scores were performed. Flortaucipir standard uptake value ratios (SUVRs) were calculated in a temporal meta region of interest (meta-ROI), entorhinal cortex and cortical/subcortical regions selected to match the tau lesion analysis. Global PiB SUVR was calculated. Autoradiography was performed in 1 PSP patient, with digital pathology used to quantify tau burden. RESULTS: Nine cases (37.5%) had Aß plaques. Global PiB SUVR correlated with Aß plaque count, with 100% specificity and 50% sensitivity for diffuse plaques. Twenty-one (87.5%) had Braak stages I to IV. Flortaucipir correlated with neurofibrillary tangle counts in entorhinal cortex, but entorhinal and meta-ROI SUVRs were not elevated in Braak IV or primary age-related tauopathy. Flortaucipir uptake patterns differed across FTLD pathologies and could separate PSP and CBD. Flortaucipir correlated with tau lesion score in red nucleus and midbrain tegmentum across patients, but not in cortical or basal ganglia regions. Autoradiography demonstrated minimal uptake of flortaucipir, although flortaucipir correlated with quantitative tau burden across regions. INTERPRETATION: Molecular PET shows expected correlations with Alzheimer-related pathology but lacks sensitivity to detect mild Alzheimer pathology in FTLD. Regional flortaucipir uptake was able to separate CBD and PSP. ANN NEUROL 2020;88:1009-1022.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Autopsia , Autorradiografia , Carbolinas , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Masculino , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/patologia , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Núcleo Rubro/diagnóstico por imagem , Núcleo Rubro/patologia , Sensibilidade e Especificidade
12.
Neurosci Lett ; 738: 135353, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905837

RESUMO

Transactive response DNA-binding protein of 43 kilodaltons (TDP-43) is a 414 amino acid protein that under physiologic conditions localizes to the nucleus and participates in the regulation of RNA metabolism through two RNA recognition motifs (RRM1 and RRM2). In neurodegenerative diseases, TDP-43 may become hyperphosphorylated, ubiquitinated, and aggregate into cytoplasmic inclusions. TDP-43 is now well-characterized as a pathologic protein of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Additionally, a common TDP-43 proteinopathy arising outside of the context of ALS and FTLD-TDP has been recently described, termed "limbic predominant age-related TDP-43 encephalopathy (LATE)." In the current study, two novel mouse-derived monoclonal antibodies, 2G11 and 2H1, raised against an epitope within the RRM2 domain of TDP-43 (residues 198-216), were characterized for specificity and immunohistochemical application in human brain from cases of Alzheimer's disease (AD), Lewy Body Disease (LBD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobe degeneration with TDP-43 inclusions (FTLD-TDP). Immunoblot analysis of these antibodies in HEK293T cells revealed efficient detection of intact human TDP-43 protein, and in N2A cells showed no reactivity for mouse TDP-43. Immunohistochemically applied to formalin-fixed paraffin-embedded tissues, 2G11 and 2H1 robustly identified the classic inclusions of ALS and FTLD-TDP, and efficaciously provided a diagnosis of LATE in cases of AD and LBD. These novel antibodies label aberrant intracytoplasmic protein inclusions without relying on hyperphosphorylated epitopes, and provide elegant discrimination between TDP-43 and tau neurofibrillary tangles within neurodegenerative comorbidity.


Assuntos
Anticorpos Monoclonais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/imunologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Humanos
13.
Gene ; 739: 144515, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32112987

RESUMO

Protein phosphatase methylesterase 1 has been identified as a novel gene in skeletal muscle that is upregulated in response to neurogenic atrophy in mice. Western blot analysis confirms that Ppme1 is expressed during both muscle cell proliferation and differentiation. Additionally, the Ppme1 promoter is active in muscle cells, while mutation of a conserved E-box element prevents full induction of the Ppme1 reporter gene, suggesting that Ppme1 is transcriptionally regulated by myogenic regulatory factors. Interestingly, immunofluorescence analysis indicates that Ppme1 is localized to both the cytoplasm and the nucleus, while cell fractionation shows that Ppme1 is found only in the cytoplasm. Functional studies reveal that inhibition of Ppme1 using ABL127 or AMZ30 attenuates muscle cell differentiation. Interestingly, inhibition of Ppme1 by ABL127 led to a significant increase in AP-1 reporter activity, as well as, increases in ERK1/2, c-Jun, Ppme1, and PP2A protein levels in differentiating muscle cells. In contrast, AMZ30 treated cells showed a significant decrease in AP-1 reporter activity and a decrease in ERK1/2 and p38 phosphorylation levels. Finally, co-immunoprecipitation studies show that ABL127, but not AMZ30, causes disruption of the endogenous interaction between Ppme1 and PP2A. The data in this study show for the first time that Ppme1 is expressed in skeletal muscle and is upregulated in response to neurogenic atrophy. Furthermore, these findings suggest that Ppme1 may act as a sentinel of the MAP kinase signaling pathway and may indirectly regulate the ERK1/2 and p38 branches via a non-canonical mechanism leading to inhibition of muscle cell differentiation.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Diferenciação Celular , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Linhagem Celular , Genes Reporter , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Fosforilação , Regulação para Cima
14.
J Cell Physiol ; 234(12): 23807-23824, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31188487

RESUMO

Tetratricopeptide repeat domain containing 39c (Ttc39c) is expressed in skeletal muscle and is transcriptionally activated in response to neurogenic atrophy in mice. Expression analysis using quantitative polymerase chain reaction and Western blots revealed that Ttc39c is expressed in both proliferating and differentiated muscle cells, peaking during early differentiation and then decreasing as cells progress further through the differentiation process. To further analyze the transcriptional regulation of Ttc39c, promoter fragments of the gene were cloned and fused with the secreted alkaline phosphatase reporter gene. The Ttc39c reporter plasmids were then transfected into cultured mouse muscle cells and found to have transcriptional activity. Furthermore, overexpression of MyoD and myogenin resulted in significant transcriptional repression of the Ttc39c reporter genes. To determine subcellular localization, an expression plasmid with the Ttc39c complementary DNA fused with green fluorescent protein was transfected into muscle cells and analyzed by confocal fluorescent microscopy showing that Tct39c localizes exclusively to the cytoplasm of cultured cells. To assess potential function in muscle, Ttc39c was overexpressed leading to vitiated muscle cell differentiation, impaired ERK1/2 MAP Kinase and Hedgehog signaling, and increased expression of IFT144 and IFT43, which are part of the IFT-A complex involved in retrograde transport in primary cilia. Interestingly, Ttc39c knockdown also resulted in inhibition of muscle cell differentiation and impaired Hedgehog and MAP Kinase signaling but did not affect IFT144 or IFT433 expression. The results of this study demonstrate that muscle cell differentiation is sensitive to abnormal Ttc39c expression and that normal Ttc39c expression appears to be necessary for proper MAP Kinase and Hedgehog signal transduction in developing muscle cells.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Ativação Transcricional/genética
15.
Am J Physiol Cell Physiol ; 316(4): C567-C581, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758994

RESUMO

Skeletal muscle atrophy results from disparate physiological conditions, including denervation, corticosteroid treatment, and aging. The purpose of this study was to describe and characterize the function of dual-specificity phosphatase 4 (Dusp4) in skeletal muscle after it was found to be induced in response to neurogenic atrophy. Quantitative PCR and Western blot analysis revealed that Dusp4 is expressed during myoblast proliferation but rapidly disappears as muscle cells differentiate. The Dusp4 regulatory region was cloned and found to contain a conserved E-box element that negatively regulates Dusp4 reporter gene activity in response to myogenic regulatory factor expression. In addition, the proximal 3'-untranslated region of Dusp4 acts in an inhibitory manner to repress reporter gene activity as muscle cells progress through the differentiation process. To determine potential function, Dusp4 was fused with green fluorescent protein, expressed in C2C12 cells, and found to localize to the nucleus of proliferating myoblasts. Furthermore, Dusp4 overexpression delayed C2C12 muscle cell differentiation and resulted in repression of a MAP kinase signaling pathway reporter gene. Ectopic expression of a Dusp4 dominant negative mutant blocked muscle cell differentiation and attenuated MAP kinase signaling by preferentially targeting the ERK1/2 branch, but not the p38 branch, of the MAP kinase signaling cascade in skeletal muscle cells. The findings presented in this study provide the first description of Dusp4 in skeletal muscle and suggest that Dusp4 may play an important role in the regulation of muscle cell differentiation by regulating MAP kinase signaling.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatases/biossíntese , Regulação para Cima/fisiologia , Animais , Atrofia , Sequência de Bases , Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HEK293 , Humanos , Músculo Esquelético/patologia , Proteínas Tirosina Fosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA