Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(12): e0189508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29228054

RESUMO

Seeing an action may activate the corresponding action motor code in the observer. It remains unresolved whether seeing and performing an action activates similar action-specific motor codes in the observer and the actor. We used novel hyperclassification approach to reveal shared brain activation signatures of action execution and observation in interacting human subjects. In the first experiment, two "actors" performed four types of hand actions while their haemodynamic brain activations were measured with 3-T functional magnetic resonance imaging (fMRI). The actions were videotaped and shown to 15 "observers" during a second fMRI experiment. Eleven observers saw the videos of one actor, and the remaining four observers saw the videos of the other actor. In a control fMRI experiment, one of the actors performed actions with closed eyes, and five new observers viewed these actions. Bayesian canonical correlation analysis was applied to functionally realign observers' and actors' fMRI data. Hyperclassification of the seen actions was performed with Bayesian logistic regression trained on actors' data and tested with observers' data. Without the functional realignment, between-subjects accuracy was at chance level. With the realignment, the accuracy increased on average by 15 percentage points, exceeding both the chance level and the accuracy without functional realignment. The highest accuracies were observed in occipital, parietal and premotor cortices. Hyperclassification exceeded chance level also when the actor did not see her own actions. We conclude that the functional brain activation signatures underlying action execution and observation are partly shared, yet these activation signatures may be anatomically misaligned across individuals.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética
2.
Soc Cogn Affect Neurosci ; 10(11): 1568-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25964498

RESUMO

The amygdala is a key structure for monitoring the relevance of environmental stimuli. Yet, little is known about the dynamics of its response to primary social cues such as gaze and emotion. Here, we examined evoked amygdala responses to gaze and facial emotion changes in five epileptic patients with intracerebral electrodes. Patients first viewed a neutral face that would then convey social cues: it turned either happy or fearful with or without gaze aversion. This social cue was followed by a laterally presented target, the detection of which was faster if it appeared in a location congruent with the averted gaze direction. First, we observed pronounced evoked amygdala potentials to the initial neutral face. Second, analysis of the evoked responses to the cue showed an early effect of gaze starting at 123 ms in the right amygdala. Differential effects of fearful vs happy valence were individually present but more variable in time and therefore not observed at group-level. Our study is the first to demonstrate such an early effect of gaze in the amygdala, in line with its particular behavioral relevance in the spatial attention task.


Assuntos
Tonsila do Cerebelo/fisiologia , Eletrocorticografia/métodos , Emoções/fisiologia , Potenciais Evocados/fisiologia , Expressão Facial , Reconhecimento Facial/fisiologia , Fixação Ocular/fisiologia , Percepção Social , Adulto , Sinais (Psicologia) , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
PLoS One ; 7(11): e50499, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209761

RESUMO

Others' gaze and emotional facial expression are important cues for the process of attention orienting. Here, we investigated with magnetoencephalography (MEG) whether the combination of averted gaze and fearful expression may elicit a selectively early effect of attention orienting on the brain responses to targets. We used the direction of gaze of centrally presented fearful and happy faces as the spatial attention orienting cue in a Posner-like paradigm where the subjects had to detect a target checkerboard presented at gazed-at (valid trials) or non gazed-at (invalid trials) locations of the screen. We showed that the combination of averted gaze and fearful expression resulted in a very early attention orienting effect in the form of additional parietal activity between 55 and 70 ms for the valid versus invalid targets following fearful gaze cues. No such effect was obtained for the targets following happy gaze cues. This early cue-target validity effect selective of fearful gaze cues involved the left superior parietal region and the left lateral middle occipital region. These findings provide the first evidence for an effect of attention orienting induced by fearful gaze in the time range of C1. In doing so, they demonstrate the selective impact of combined gaze and fearful expression cues in the process of attention orienting.


Assuntos
Magnetoencefalografia/métodos , Adolescente , Adulto , Atenção/fisiologia , Criança , Emoções/fisiologia , Expressão Facial , Feminino , Humanos , Masculino , Tempo de Reação , Adulto Jovem
4.
Front Psychol ; 3: 454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162503

RESUMO

The rapid recognition of familiar faces is crucial for social interactions. However the actual speed with which recognition can be achieved remains largely unknown as most studies have been carried out without any speed constraints. Different paradigms have been used, leading to conflicting results, and although many authors suggest that face recognition is fast, the speed of face recognition has not been directly compared to "fast" visual tasks. In this study, we sought to overcome these limitations. Subjects performed three tasks, a familiarity categorization task (famous faces among unknown faces), a superordinate categorization task (human faces among animal ones), and a gender categorization task. All tasks were performed under speed constraints. The results show that, despite the use of speed constraints, subjects were slow when they had to categorize famous faces: minimum reaction time was 467 ms, which is 180 ms more than during superordinate categorization and 160 ms more than in the gender condition. Our results are compatible with a hierarchy of face processing from the superordinate level to the familiarity level. The processes taking place between detection and recognition need to be investigated in detail.

5.
Front Hum Neurosci ; 6: 156, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675297

RESUMO

Joint attention consists in following another's gaze onto an environmental object, which leads to the alignment of both subjects' attention onto this object. It is a fundamental mechanism of non-verbal communication, and it is essential for dynamic, online, interindividual synchronization during interactions. Here we aimed at investigating the oscillatory brain correlates of joint attention in a face-to-face paradigm where dyads of participants dynamically oriented their attention toward the same or different objects during joint and no-joint attention periods respectively. We also manipulated task instruction: in socially driven instructions, the participants had to follow explicitly their partner's gaze, while in color-driven instructions, the objects to be looked at were designated at by their color so that no explicit gaze following was required. We focused on oscillatory activities in the 10 Hz frequency range, where parieto-occipital alpha and the centro-parietal mu rhythms have been described, as these rhythms have been associated with attention and social coordination processes respectively. We tested the hypothesis of a modulation of these oscillatory activities by joint attention. We used dual-EEG to record simultaneously the brain activities of the participant dyads during our live, face-to-face joint attention paradigm. We showed that joint attention periods - as compared to the no-joint attention periods - were associated with a decrease of signal power between 11 and 13 Hz over a large set of left centro-parieto-occipital electrodes, encompassing the scalp regions where alpha and mu rhythms have been described. This 11-13 Hz signal power decrease was observed independently of the task instruction: it was similar when joint versus no-joint attention situations were socially driven and when they were color-driven. These results are interpreted in terms of the processes of attention mirroring, social coordination, and mutual attentiveness associated with joint attention state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA