Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1046397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063203

RESUMO

Drought is the most detrimental abiotic stress in agriculture, limiting crop growth and yield and, currently, its risk is increasing due to climate change. Thereby, ensuring food security will be one of the greatest challenges of the agriculture in the nearest future, accordingly it is essential to look for sustainable strategies to cope the negative impact of drought on crops. Inoculation of pulses with biostimulants such as rhizobium strains with high nitrogen fixation efficiency and drought-tolerance, has emerged as a promising and sustainable production strategy. However, some commercial inoculums are not effective under field conditions due to its lower effectiveness against indigenous rhizobium strains in the establishment of the symbiosis. Thus, in the present study, we evaluated the ability to improve drought tolerance in common bean plants of different indigenous rhizobia strains isolated from nearby crop fields in the Basque Country either affected by drought or salinity. The plants in this trial were grown in a climatic chamber under controlled conditions and exposed to values of 30% relative soil water content at the time of harvest, which is considered a severe drought. From the nine bacteria strains evaluated, three were found to be highly efficient under drought (namely 353, A12 and A13). These strains sustained high infectiveness (nodulation capacity) and effectiveness (shoot biomass production) under drought, even surpassing the plants inoculated with the CIAT899 reference strain, as well as the chemically N-fertilized plants. The tolerance mechanisms developed by plants inoculated with 353, A12 and A13 strains were a better adjustment of the cell wall elasticity that prevents mechanical damages in the plasma membrane, a higher WUE and an avoidance of the phenological delay caused by drought, developing a greater number of flowers. These results provide the basis for the development of efficient common bean inoculants able to increase the yield of this crop under drought conditions in the Northern Spain and, thus, to be used as biostimulants. In addition, the use of these efficient nitrogen fixation bacteria strains is a sustainable alternative to chemical fertilization, reducing cost and minimizing its negative impact on environment.

2.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986993

RESUMO

Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.

3.
Front Plant Sci ; 14: 1119854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923130

RESUMO

Viticulture is highly dependent on phytochemicals to maintain good vineyard health. However, to reduce their accumulation in the environment, green regulations are driving the development of eco-friendly strategies. In this respect, seaweeds have proven to be one of the marine resources with the highest potential as plant protective agents, representing an environmentally-friendly alternative approach for sustainable wine production. The current work follows an interdisciplinary framework to evaluate the capacity of Ulva ohnoi and Rugulopteryx okamurae seaweeds to induce defense mechanisms in grapevine plants. To our knowledge, this is the first study to evaluate Rugulopteryx okamurae as a biostimulator . This macroalgae is relevant since it is an invasive species on the Atlantic and Mediterranean coast causing incalculable economic and environmental burdens. Four extracts (UL1, UL2, RU1 and RU2 developed from Ulva and Rugulopteryx, respectively) were foliar applied to Tempranillo plants cultivated under greenhouse conditions. UL1 and RU2 stood out for their capacity to induce defense genes, such as a PR10, PAL, STS48 and GST1, mainly 24 hours after the first application. The increased expression level of these genes agreed with i) an increase in trans-piceid and trans-resveratrol content, mainly in the RU2 treated leaves, and, ii) an increase in jasmonic acid and decrease in salicylic acid. Moreover, an induction of the activity of the antioxidant enzymes was observed at the end of the experiment, with an increase in superoxide dismutase and catalase in the RU2-treated leaves in particular. Interestingly, while foliar fungal diversity was not influenced by the treatments, alga extract amendment modified fungal composition, RU2 application enriching the content of various groups known for their biocontrol activity. Overall, the results evidenced the capacity of Rugulopteryx okamurae for grapevine biostimulation, inducing the activation of several secondary metabolite pathways and promoting the abundance of beneficial microbiota involved in grapevine protection. While further studies are needed to unravel the bioactive compound(s) involved, including conducting field experiments etc., the current findings are the first steps towards the inclusion of Rugulopteryx okamurae in a circular scheme that would reduce its accumulation on the coast and benefit the viticulture sector at the same time.

4.
Front Plant Sci ; 12: 656961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093614

RESUMO

Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.

5.
J Plant Physiol ; 254: 153284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010664

RESUMO

The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables. The results indicated that T. pratense possesses better competition ability due to the higher competitive performance for soil resources compared to A. capillaris, explained by a higher root biomass and a higher nitrogen uptake rate in the former than in the latter. These traits permitted T. pratense to show higher photosynthetic rate than A. capillaris when both species were grown in mixture. Furthermore, the interspecific competition provoked A. capillaris to activate its antioxidant metabolism, through SOD activity, to detoxify the reactive oxygen species generated due to its lower capacity for using the photochemical energy absorbed. In this experiment, we conclude that the competitiveness seems to be more related with soil resources competition than with light competition, and that the photosynthetic rate decline in A. capillaris is more a secondary effect as a consequence of nitrogen limitation.


Assuntos
Agrostis/fisiologia , Pradaria , Trifolium/fisiologia , Agrostis/crescimento & desenvolvimento , Agrostis/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Solo , Superóxido Dismutase/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
6.
Plant Sci ; 293: 110418, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081267

RESUMO

Nitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced. High nitrate altered nitrogen and carbon metabolism, reducing the content of sugars and inducing the accumulation of Ca2+ and amino acids, such as glutamate, alanine and γ-aminobutyrate (GABA), that could act to replenish the succinate pool in the tricarboxylic acid cycle and maintain its activity. Other metabolic alterations found were the accumulation of the polyamines spermidine and spermine, and the reduction of jasmonic acid (JA) and the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC). These results indicate that the growth root inhibition by high NO3- is a complex metabolic response that involves GABA as a key link between C and N metabolism which, together with plant growth regulators such as auxins, cytokinins, abscisic acid, JA, and the ethylene precursor ACC, is able to regulate the metabolic response of root grown under high nitrate concentrations.


Assuntos
Aminoácidos Cíclicos/metabolismo , Glucose/metabolismo , Nitratos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Carbono/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos , Ácidos Indolacéticos/metabolismo , Nitratos/antagonistas & inibidores , Nitrogênio/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
7.
Plant Physiol Biochem ; 123: 233-241, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29253801

RESUMO

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.


Assuntos
Dióxido de Carbono/farmacologia , Flavonoides/biossíntese , Lactuca/metabolismo , Luz , Fenóis/metabolismo
8.
J Plant Physiol ; 220: 193-202, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29197761

RESUMO

Climate change can have major consequences for grassland communities since the different species of the community utilize different mechanisms for adaptation to drought and elevated CO2 levels. In addition, contradictory data exist when the combined effects of elevated CO2 and drought are analyzed because the soil water content is not usually similar between CO2 concentrations. Thus, the objectives of this work have been to examine the effect of water stress on plant water relations in two grassland species (Trifolium pratense and Agrostis capillaris), analyzing the possible differences between the two species when soil water content is equal in all treatments, and to elucidate if development under elevated CO2 increases drought tolerance and if so, which are the underlying mechanisms. At ambient CO2, when soil volumetric water content was 15%, both species decreased their water potential in order to continue taking up water. Trifolium pratense performed osmotic adjustment, while Agrostis capillaris decreased the rigidity of its cell wall; moreover, both species increased the root to shoot ratio and decreased leaf area. However, these mechanisms were not sufficient to maintain cell turgor. Elevated CO2 partially mitigated the negative impact of drought on turgor potential in Trifolium pratense through a higher osmotic adjustment and root to shoot ratio and in Agrostis capillaris through a higher leaf relative water content caused by higher hydraulic conductance, but the impact of drought was not mitigated in either species by higher soil water conservation.


Assuntos
Agrostis/fisiologia , Dióxido de Carbono/metabolismo , Secas , Trifolium/fisiologia , Água/fisiologia , Pradaria , Especificidade da Espécie
9.
Plant Physiol Biochem ; 120: 213-222, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29059604

RESUMO

Nitrogen (N) is an important regulator of photosynthetic carbon (C) flow in plants, and an adequate balance between N and C metabolism is needed for correct plant development. However, an excessive N supply can alter this balance and cause changes in specific organic compounds associated with primary and secondary metabolism, including plant growth regulators. In previous work, we observed that high nitrate supply (15 mM) to maize plants led to a decrease in leaf expansion and overall biomass production, when compared with low nitrate supply (5 mM). Thus, the aim of this work is to study how overdoses of nitrate can affect photosynthesis and plant development. The results show that high nitrate doses greatly increased amino acid production, which led to a decrease in the concentration of 2-oxoglutarate, the main source of C skeletons for N assimilation. The concentration of 1-aminocyclopropane-1-carboxylic acid (and possibly its product, ethylene) also rose in high nitrate plants, leading to a decrease in leaf expansion, reducing the demand for photoassimilates by the growing tissues and causing the accumulation of sugars in source leaves. This accumulation of sugars, together with the decrease in 2-oxoglutarate levels and the reduction in chlorophyll concentration, decreased plant photosynthetic rates. This work provides new insights into how high nitrate concentration alters the balance between C and N metabolism, reducing photosynthetic rates and disrupting whole plant development. These findings are particularly relevant since negative effects of nitrate in contexts other than root growth have rarely been studied.


Assuntos
Carbono/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
J Plant Physiol ; 173: 51-61, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462078

RESUMO

Somatic embryogenesis is a powerful alternative to conventional mass propagation of Quercus suber L. However, poor quality and incomplete maturation of somatic embryos restrict any application. Given that epigenetic and hormonal control govern many developmental stages, including maturation of zygotic embryos, global DNA methylation and abscisic acid (ABA) were analyzed during development and maturation of cork oak somatic embryos. Our results indicated that development of somatic embryos concurred with a decrease in 5-mdC. In contrast, endogenous ABA content showed a transient increase with a peak in immature E2 embryos denoting the onset of the maturation phase. A cold stratification phase was necessary for embryos to acquire germination ability, which coincided with a significant decrease in 5-mdC and ABA content. Immunohistochemical analyses showed that there was a specific spatial-temporal regulation during embryogenesis, particularly after the cold treatment. The acquisition of germination capacity concurred with a general low 5-mdC signal in the root meristem, while retention of the 5-mdC signal was mainly located in the shoot meristem and provascular tissues. Conversely, ABA immunolocalization was mainly located in the root and shoot apical meristems. Furthermore, a strong decrease in the ABA signal was observed in the root cap after the stratification treatment suggesting a role for the root cap during development of somatic embryos. These results suggest that, in addition to ABA, epigenetic control appears to play an important role for the correct maturation and subsequent germination of cork oak somatic embryos.


Assuntos
Ácido Abscísico/metabolismo , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Quercus/genética , Metilação de DNA , Germinação , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Técnicas de Embriogênese Somática de Plantas , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
11.
J Plant Physiol ; 173: 120-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462086

RESUMO

Nitrogen (N) is an essential macronutrient that limits agricultural productivity, and both low and high N supply have been suggested to alter plant growth. The overall aim of this work is to study the impact of nitrate (NO3(-)) in maize yield and the possible causes that induce this alteration. High NO3(-) doses did not increase the yield of maize grown neither in the field nor under controlled conditions. In fact, plants grown under controlled conditions for 45 days with NO3(-) concentrations over 5mM showed a decrease in biomass production. This reduction was perceptible in shoots prior to roots, where phytomer expansion was reduced. Cell size and number were also reduced in the leaves of plants with high NO3(-). This alteration was correlated with the increase of 1-aminocyclopropane-1-carboxylic acid in leaves, which was probably translocated from the roots in order to synthesize ethylene. Cytokinins (CKs) also showed a relevant role in this inhibitory effect, increasing in high NO3(-) plants with a reduction in root and shoot growth, inhibition of apical dominance and a strong decrease of leaf expansion, symptoms described previously as "CK syndrome". We propose that high NO3(-) inhibits maize growth by causing hormonal alterations that modify plant growth from cell to whole plant.


Assuntos
Aminoácidos Cíclicos/metabolismo , Nitratos/farmacologia , Zea mays/efeitos dos fármacos , Biomassa , Citocininas/metabolismo , Nitrogênio/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Zea mays/citologia , Zea mays/crescimento & desenvolvimento
12.
Photosynth Res ; 111(3): 269-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22286185

RESUMO

The future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO(2)] (350 or 700 µmol mol(-1) CO(2), respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO(2), the rate of CO(2) diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO(2) availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO(2) partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.


Assuntos
Dióxido de Carbono/toxicidade , Exposição Ambiental/efeitos adversos , Hordeum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Mudança Climática , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Salinidade
13.
Physiol Plant ; 139(3): 256-68, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20149130

RESUMO

Future environmental conditions will include elevated concentrations of salt in the soil and an elevated concentration of CO(2) in the atmosphere. Because these environmental changes will likely affect reactive oxygen species (ROS) formation and cellular antioxidant metabolism in opposite ways, we analyzed changes in cellular H(2)O(2) and non-enzymatic antioxidant metabolite [lipoic acid (LA), ascorbate (ASA), glutathione (GSH)] content induced by salt stress (0, 80, 160 or 240 mM NaCl) under ambient (350 micromol mol(-1)) or elevated (700 micromol mol(-1)) CO(2) concentrations in two barley cultivars (Hordeum vulgare L.) that differ in sensitivity to salinity (cv. Alpha is more sensitive than cv. Iranis). Under non-salinized conditions, elevated CO(2) increased LA content, while ASA and GSH content decreased. Under salinized conditions and ambient CO(2), ASA increased, while GSH and LA decreased. At 240 mM NaCl, H(2)O(2) increased in Alpha and decreased in Iranis. When salt stress was imposed at elevated CO(2), less oxidative stress and lower increases in ASA were detected, while LA was constitutively higher. The decrease in oxidative stress could have been because of less ROS formation or to a higher constitutive LA level, which might have improved regulation of ASA and GSH reductions. Iranis had a greater capacity to synthesize ASA de novo and had higher constitutive LA content than did Alpha. Therefore, we conclude that elevated CO(2) protects barley cultivars against oxidative damage. However, the magnitude of the positive effect is cultivar specific.


Assuntos
Dióxido de Carbono/metabolismo , Hordeum/metabolismo , Estresse Oxidativo , Salinidade , Ácido Tióctico/biossíntese , Ascorbato Peroxidases , Ácido Ascórbico/biossíntese , Glutationa/biossíntese , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Peroxidases/metabolismo
14.
J Plant Physiol ; 167(1): 15-22, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19660829

RESUMO

Future environmental conditions will include elevated concentrations of salt in the soils and elevated concentrations of CO(2) in the atmosphere. Soil salinization inhibits crop growth due to osmotic and ionic stress. However, plants possess salt tolerance mechanisms, such as osmotic and elastic adjustment, to maintain water status. These mechanisms, which enhance the uptake and accumulation of ions and the synthesis of compatible solutes, require substantial energy expenditure. Under elevated CO(2), the carbon and energy supplies are usually higher, which could facilitate the energetically expensive salt tolerance mechanisms. To test this hypothesis, the factors involved in osmotic and elastic adjustments in two barley cultivars (Hordeum vulgare cv. Alpha and cv. Iranis) grown under several salt concentrations and at ambient or elevated [CO(2)] were evaluated. Under ambient [CO(2)] and salt stress, both cultivars (1) decreased the volumetric elasticity modulus (epsilon) of their cell walls, and (2) adjusted osmotically by accumulating ions (Na(+) and Cl(-)) from the soil, confirming barley as an includer species. The contributions of sugars and other unidentified osmolytes also increased, while the contribution of organic acids decreased. Under elevated [CO(2)] and salt stress, epsilon decreased less and osmotic adjustment (OA) was greater than at ambient [CO(2)]. In fact, the greater OA under elevated [CO(2)] was positively correlated with the contributions of sugars and other unidentified compounds. These results indicate that barley is likely to be successful in more salinized soils due to its capacity for OA under elevated [CO(2)].


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Íons , Compostos Orgânicos/metabolismo , Osmose/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Salinidade , Cloreto de Sódio/farmacologia , Água/fisiologia
15.
Physiol Plant ; 135(1): 29-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121097

RESUMO

Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 mM NaCl) on protective enzyme activities under ambient (350 micromol mol(-1)) and elevated (700 micromol mol(-1)) CO(2) concentrations were investigated in two barley cultivars (Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.15.1.1; ascorbate peroxidase (APX), EC 1.11.1.11; catalase (CAT), EC 1.11.1.6; dehydroascorbate reductase (DHAR), EC 1.8.5.1; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; glutathione reductase (GR), EC 1.6.4.2] and their isoenzymatic profiles were determined. Under salinity and ambient CO(2), upregulation of antioxidant enzymes such as SOD, APX, CAT, DHAR and GR occurred. However, this upregulation was not enough to counteract all ROS formation as both ion leakage and lipid peroxidation came into play. The higher constitutive SOD and CAT activities together with a higher contribution of Cu,Zn-SOD 1 detected in Iranis might possibly contribute and make this cultivar more salt-tolerant than Alpha. Elevated CO(2) alone had no effect on the constitutive levels of antioxidant enzymes in Iranis, whereas in Alpha it induced an increase in SOD, CAT and MDHAR together with a decrease of DHAR and GR. Under combined conditions of elevated CO(2) and salinity the oxidative damage recorded was lower, above all in Alpha, together with a lower upregulation of the antioxidant system. So it can be concluded that elevated CO(2) mitigates the oxidative stress caused by salinity, involving lower ROS generation and a better maintenance of redox homeostasis as a consequence of higher assimilation rates and lower photorespiration, being the response dependent on the cultivar analysed.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/farmacologia , Hordeum/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Ascorbato Peroxidases , Catalase/metabolismo , Glutationa Redutase/metabolismo , Hordeum/enzimologia , Oxirredução , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Especificidade da Espécie , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA