Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(51): 44686-44695, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30532957

RESUMO

This work reports a simple approach to form, study, and utilize rough coatings that prevent the adhesion of gallium-based liquid metal alloys. Typically, liquids with large interfacial tension do not wet nonreactive surfaces, regardless of surface topography. However, these alloys form a surface oxide "skin" that adheres to many substrates, even those with low surface energy. This work reports a simple approach to render closed channels and surfaces, including soft materials, to be "oxide-phobic" via spray-coating (NeverWet, which is commercially available and inexpensive). Surface spectroscopic techniques and metrology tools elucidate the coatings to comprise silica nanoparticles grafted with silicones that exhibit dual length scales of roughness. Although prior work shows the importance of surface roughness in preventing adhesion, the present work confirms that both hydrophobic and hydrophilic rough surfaces prevent oxide adhesion. Furthermore, the coating enables reversible actuation through submillimeter closed channels to form a reconfigurable antenna in the gigahertz range without the need for corrosive acids or bases that remove the oxide. In addition, the coating enables open surface patterning of conductive traces of liquid metal. This shows it is possible to actuate liquid metals in air without leaving neither metal nor oxide residue on surfaces to enable reconfigurable electronics, microfluidics, and soft electrodes.

2.
Lab Chip ; 17(19): 3272-3278, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28836638

RESUMO

A wireless on-skin inertial sensor based on free-moving liquid metal is introduced. The inertial sensor comprises a eutectic gallium-indium (eGaIn) droplet that modulates the capacitance between two electrodes. The capacitive output of the sensor is connected to a planar coil to form an LC resonator whose resonant frequency can be read out wirelessly. Liquid metal electrodes and the coil are fabricated on a 20 µm thick silicone membrane, which can stretch up to 600%, using spray-deposition of eGaIn. The moving droplet is encapsulated on the opposite side of the membrane using spray-deposition of Dragon Skin 10 silicone. The output characteristics, electrical simulations of the capacitance, and dynamic characteristics of the sensor are shown. The sensor is used for measuring tilt angles and recording arm gestures.


Assuntos
Metais/química , Microeletrodos , Dispositivos Eletrônicos Vestíveis , Aceleração , Desenho de Equipamento , Gestos , Humanos , Elastômeros de Silicone/química , Pele/química , Punho/fisiologia
3.
Lab Chip ; 16(10): 1812-20, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27025537

RESUMO

This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process.

4.
Adv Mater ; 25(36): 5081-5, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23824583

RESUMO

This paper describes a method to direct-write 3D liquid metal microcomponents at room temperature. The thin oxide layer on the surface of the metal allows the formation of mechanically stable structures strong enough to stand against gravity and the large surface tension of the liquid. The method is capable of printing wires, arrays of spheres, arches, and interconnects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA