Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Curr Protoc ; 1(10): e304, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662501
2.
Curr Protoc ; 1(9): e243, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516049

RESUMO

Traditional arc-based light sources and Light Emitting Diodes (LEDs) are described, and the pros and cons of these sources with respect to fluorescence microscopy are discussed. For multi-color applications, arc-based light sources offer white light ranging from the ultraviolet (UV) to the infrared (IR), while LEDs come in a range of colors spanning the same wavelengths. The power of traditional arc-based sources is controlled with neutral density (ND) filters, reducing power across the entire range of wavelengths, while LED-based sources can be controlled directly by modulating current passing through the electronics. Similarly, arc-based sources use physical shutters to control sample exposure to light in a range of tens to hundreds of milliseconds (ms), while LEDs can be turned ON/OFF electronically in <1 ms. The complexity of comparing and measuring light power on the sample, due to normalization of available light source spectra and complex power measurements, is discussed. The superiority of LEDs for stability of light power output is covered. Direct coupling of light sources to the microscope is more cost effective and leads to higher available light power. Various options for setting up multi-color imaging, including high-speed imaging with multiple LEDs and a triple cube, are described. A brief introduction to lasers, with suggested further reading, is included in this article. Finally, the smaller environmental footprint of LEDs relative to arc-based light sources is highlighted. © 2021 Wiley Periodicals LLC.


Assuntos
Microscopia de Fluorescência
3.
Proc Natl Acad Sci U S A ; 117(31): 18540-18549, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675239

RESUMO

Once described as mere "bags of enzymes," bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid-liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Imagem Individual de Molécula , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
4.
Dev Cell ; 45(4): 496-511.e6, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29787710

RESUMO

Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.


Assuntos
Caenorhabditis elegans/embriologia , Tamanho Celular , Embrião não Mamífero/fisiologia , Microtúbulos/fisiologia , Paracentrotus/embriologia , Fuso Acromático/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Embrião não Mamífero/citologia , Paracentrotus/fisiologia
5.
J Cell Biol ; 210(5): 691-3, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26323687

RESUMO

In eukaryotes, the microtubule-based spindle drives chromosome segregation. In this issue, Schweizer et al. (2015; J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506107) find that the spindle area is demarcated by a semipermeable organelle barrier. Molecular crowding, which is microtubule independent, causes the enrichment and/or retention of crucial factors in the spindle region. Their results add an important new feature to the models of how this structure assembles and is regulated.


Assuntos
Retículo Endoplasmático/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Membrana Nuclear/fisiologia , Fuso Acromático/fisiologia , Animais , Humanos
6.
J Cell Biol ; 209(5): 645-51, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26033258

RESUMO

Multicellular development requires that cells reduce in size as a result of consecutive cell divisions without increase in embryo volume. To maintain cellular integrity, organelle size adapts to cell size throughout development. During mitosis, the longest chromosome arm must be shorter than half of the mitotic spindle for proper chromosome segregation. Using high-resolution time-lapse microscopy of living Caenorhabditis elegans embryos, we have quantified the relation between cell size and chromosome length. In control embryos, chromosome length scaled to cell size. Artificial reduction of cell size resulted in a shortening of chromosome length, following a trend predicted by measurements from control embryos. Disturbing the RAN (Ras-related nuclear protein)-GTP gradient decoupled nuclear size from cell size and resulted in chromosome scaling to nuclear size rather than cell size; smaller nuclei contained shorter chromosomes independent of cell size. In sum, quantitative analysis relating cell, nuclear, and chromosome size predicts two levels of chromosome length regulation: one through cell size and a second in response to nuclear size.


Assuntos
Caenorhabditis elegans/embriologia , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Embrião não Mamífero/embriologia , Mitose/fisiologia , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia , Humanos , Proteína ran de Ligação ao GTP/metabolismo
7.
Cell Cycle ; 13(7): 1078-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24553123

RESUMO

Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response is still unclear. Here we show that a major DSB sensor, the Mre11-Rad50-Xrs2 (MRX) complex, is regulated by cell cycle-dependent phosphorylation specifically in mitosis. This modification depends on the cyclin-dependent kinase Cdc28/Cdk1, and abrogation of Xrs2 and Mre11 phosphorylation results in a marked preference for DSB repair through NHEJ. Importantly, we show that phosphorylation of the MRX complex after DNA damage and during mitosis are regulated independently of each other by Tel1/ATM and Cdc28/Cdk1 kinases. Collectively, our results unravel an intricate network of phosphoregulatory mechanisms that act through the MRX complex to modulate DSB repair efficiency during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Mitose , Fosforilação , Saccharomyces cerevisiae/citologia , Transdução de Sinais
8.
Curr Biol ; 23(9): 764-9, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23623556

RESUMO

The presence of a single centromere on each chromosome that signals formation of a mitotic kinetochore is central to accurate chromosome segregation. The histone H3 variant centromere protein-A (CENP-A) is critical for centromere identity and function; CENP-A chromatin acts as an epigenetic mark to direct both centromere and kinetochore assembly. Interpreting the centromere epigenetic mark ensures propagation of a single centromere per chromosome to maintain ploidy. Thus, understanding the nature of CENP-A chromatin is crucial for all cell divisions. However, there are ongoing debates over the fundamental composition of centromeric chromatin. Here we show that natively assembled human CENP-A nucleosomes are octameric throughout the cell cycle. Using total internal reflection fluorescence (TIRF)-coupled photobleaching-assisted copy-number counting of single nucleosomes obtained from cultured cells, we find that the majority of CENP-A nucleosomes contain CENP-A dimers. In addition, we detect the presence of H2B and H4 in these nucleosomes. Surprisingly, CENP-A associated with the chaperone HJURP can exist as either monomer or dimer, indicating possible assembly intermediates. Thus, our findings indicate that octameric CENP-A nucleosomes mark the centromeric region to ensure proper epigenetic inheritance and kinetochore assembly.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Autoantígenos/genética , Ciclo Celular , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Dosagem de Genes , Células HeLa , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Nucleossomos/genética , Multimerização Proteica
9.
Methods Enzymol ; 505: 81-103, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22289449

RESUMO

The mitotic spindle, due to its striking form, has been imaged for well over 100 years. Composed largely of microtubules and chromosomes, the spindle also contains numerous proteins whose roles include biochemical and biophysical regulation of mitosis. Given the transient, dynamic nature of the spindle, the light microscope continues to be the main tool employed to unlock its mysteries. In this chapter, we will discuss modern light microscopy techniques commonly used for imaging this intricate cellular machine as well as provide examples and protocols. We will also describe some biological preparations and experimental regimes for investigation of the mitotic spindle.


Assuntos
Rastreamento de Células/métodos , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/citologia , Divisão Celular/genética , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Humanos , Mamíferos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Microscopia de Polarização/métodos , Microscopia de Vídeo/métodos , Microtúbulos/genética , Mitose/genética , Saccharomyces cerevisiae/citologia , Fuso Acromático/genética
10.
Proc Natl Acad Sci U S A ; 108(43): E914-23, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21987786

RESUMO

Polo-like kinases (PLKs) are evolutionarily conserved kinases essential for cell cycle regulation. These kinases are characterized by the presence of a C-terminal phosphopeptide-interaction domain, the polo-box domain (PBD). How the functional domains of PLKs work together to promote cell division is not understood. To address this, we performed a genetic screen to identify mutations that independently modulate the kinase and PBD activities of yeast PLK/Cdc5. This screen identified a mutagenic hotspot in the F-helix region of Cdc5 kinase domain that allows one to control kinase activity in vivo. These mutations can be systematically engineered into other major eukaryotic cell cycle kinases to similarly regulate their activity in live cells. Here, using this approach, we show that the kinase activity of Cdc5 can promote the execution of several stages of mitosis independently of PBD activity. In particular, we observe that the activation of Cdc14 and execution of mitotic exit are uniquely sensitive to the modulation of Cdc5 kinase activity. In contrast, PBD-defective mutants are capable of completing mitosis but are unable to maintain spindle pole body integrity. Consistent with this defect, PBD-deficient cells progressively double the size of their genome and ultimately lose genome integrity. Collectively, these results highlight the specific contributions of Cdc5 functional domains to cell division and reveal unexpected mechanisms controlling spindle pole body behavior and genome stability.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica/fisiologia , Mitose/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Proteínas de Ciclo Celular/isolamento & purificação , Eletroforese , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Mitose/genética , Mutação/genética , Fosforilação , Proteínas Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia
11.
Curr Biol ; 21(10): R388-90, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21601795

RESUMO

Spatial and temporal coordination of mitotic events has been generally attributed to the coincidental outcome of increasing cyclin-dependent kinase activity. A recent study reports that mitotic events and structures previously considered to be independently controlled are capable of trans-regulation to ensure genomic integrity.


Assuntos
Tamanho Celular , Segregação de Cromossomos/fisiologia , Instabilidade Genômica/fisiologia , Mitose/fisiologia , Conformação de Ácido Nucleico , Saccharomycetales
12.
Nat Cell Biol ; 12(12): 1186-93, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102442

RESUMO

Epigenetic mechanisms regulate genome activation in diverse events, including normal development and cancerous transformation. Centromeres are epigenetically designated chromosomal regions that maintain genomic stability by directing chromosome segregation during cell division. The histone H3 variant CENP-A resides specifically at centromeres, is fundamental to centromere function and is thought to act as the epigenetic mark defining centromere loci. Mechanisms directing assembly of CENP-A nucleosomes have recently emerged, but how CENP-A is maintained after assembly is unknown. Here, we show that a small GTPase switch functions to maintain newly assembled CENP-A nucleosomes. Using functional proteomics, we found that MgcRacGAP (a Rho family GTPase activating protein) interacts with the CENP-A licensing factor HsKNL2. High-resolution live-cell imaging assays, designed in this study, demonstrated that MgcRacGAP, the Rho family guanine nucleotide exchange factor (GEF) Ect2, and the small GTPases Cdc42 and Rac, are required for stability of newly incorporated CENP-A at centromeres. Thus, a small GTPase switch ensures epigenetic centromere maintenance after loading of new CENP-A.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Proteína Centromérica A , Replicação do DNA , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA