Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1543, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378789

RESUMO

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

2.
PLoS Biol ; 18(12): e3001003, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315855

RESUMO

Stem-cell niche signaling is short-range in nature, such that only stem cells but not their differentiating progeny receive self-renewing signals. At the apical tip of the Drosophila testis, 8 to 10 germline stem cells (GSCs) surround the hub, a cluster of somatic cells that organize the stem-cell niche. We have previously shown that GSCs form microtubule-based nanotubes (MT-nanotubes) that project into the hub cells, serving as the platform for niche signal reception; this spatial arrangement ensures the reception of the niche signal specifically by stem cells but not by differentiating cells. The receptor Thickveins (Tkv) is expressed by GSCs and localizes to the surface of MT-nanotubes, where it receives the hub-derived ligand Decapentaplegic (Dpp). The fate of Tkv receptor after engaging in signaling on the MT-nanotubes has been unclear. Here we demonstrate that the Tkv receptor is internalized into hub cells from the MT-nanotube surface and subsequently degraded in the hub cell lysosomes. Perturbation of MT-nanotube formation and Tkv internalization from MT-nanotubes into hub cells both resulted in an overabundance of Tkv protein in GSCs and hyperactivation of a downstream signal, suggesting that the MT-nanotubes also serve a second purpose to dampen the niche signaling. Together, our results demonstrate that MT-nanotubes play dual roles to ensure the short-range nature of niche signaling by (1) providing an exclusive interface for the niche ligand-receptor interaction; and (2) limiting the amount of stem cell receptors available for niche signal reception.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia , Animais , Diferenciação Celular/fisiologia , Drosophila melanogaster/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Ligantes , Masculino , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA