Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Mach Intell ; 4(6): 583-595, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36276634

RESUMO

In microscopy-based drug screens, fluorescent markers carry critical information on how compounds affect different biological processes. However, practical considerations, such as the labor and preparation formats needed to produce different image channels, hinders the use of certain fluorescent markers. Consequently, completed screens may lack biologically informative but experimentally impractical markers. Here, we present a deep learning method for overcoming these limitations. We accurately generated predicted fluorescent signals from other related markers and validated this new machine learning (ML) method on two biologically distinct datasets. We used the ML method to improve the selection of biologically active compounds for Alzheimer's disease (AD) from a completed high-content high-throughput screen (HCS) that had only contained the original markers. The ML method identified novel compounds that effectively blocked tau aggregation, which had been missed by traditional screening approaches unguided by ML. The method improved triaging efficiency of compound rankings over conventional rankings by raw image channels. We reproduced this ML pipeline on a biologically independent cancer-based dataset, demonstrating its generalizability. The approach is disease-agnostic and applicable across diverse fluorescence microscopy datasets.

2.
Nat Commun ; 11(1): 3328, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620864

RESUMO

Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.


Assuntos
Variação Genética , Proteínas de Membrana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de RNA/genética , Retina/metabolismo , Degeneração Retiniana/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Isoformas de RNA/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Degeneração Retiniana/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
3.
J Vis Exp ; (138)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30176002

RESUMO

Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level. This assay is complementary to the previously developed commercial assay and enables sensitive and specific in situ detection of splice variants, short targets, and point mutations within the tissue. In this protocol, probes were designed to target unique exon junctions for two clinically important splice variants, EGFRvIII and METΔ14. The detection of short target sequences was demonstrated by the specific detection of CDR3 sequences of T-cell receptors α and ß in the Jurkat T-cell line. Also shown is the utility of this ISH assay for the distinction of RNA target sequences at single-nucleotide resolution (point mutations) through the visualization of EGFR L858R and KRAS G12A single-nucleotide variations in cell lines using automated staining platforms. In summary, the protocol shows a specialized RNA ISH assay that enables the detection of splice variants, short sequences, and mutations in situ for manual performance and on automated stainers.


Assuntos
Variação Genética/genética , Hibridização In Situ/métodos , Mutação Puntual/genética , RNA/genética , Humanos
4.
Mol Neurobiol ; 55(7): 6169-6181, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29264769

RESUMO

Investigating the expression of RNAs that differ by short or single nucleotide sequences at a single-cell level in tissue has been limited by the sensitivity and specificity of in situ hybridization (ISH) techniques. Detection of short isoform-specific sequences requires RNA isolation for PCR analysis-an approach that loses the regional and cell-type-specific distribution of isoforms. Having the capability to distinguish the differential expression of RNA variants in tissue is critical because alterations in mRNA splicing and editing, as well as coding single nucleotide polymorphisms, have been associated with numerous cancers, neurological and psychiatric disorders. Here we introduce a novel highly sensitive single-probe colorimetric/fluorescent ISH approach that targets short exon/exon RNA splice junctions using single-pair oligonucleotide probes (~ 50 bp). We use this approach to investigate, with single-cell resolution, the expression of four transcripts encoding the neuregulin (NRG) receptor ErbB4 that differ by alternative splicing of exons encoding two juxtamembrane (JMa/JMb) and two cytoplasmic (CYT-1/CYT-2) domains that alter receptor stability and signaling modes, respectively. By comparing ErbB4 hybridization on sections from wild-type and ErbB4 knockout mice (missing exon 2), we initially demonstrate that single-pair probes provide the sensitivity and specificity to visualize and quantify the differential expression of ErbB4 isoforms. Using cell-type-specific GFP reporter mice, we go on to demonstrate that expression of ErbB4 isoforms differs between neurons and oligodendrocytes, and that this differential expression of ErbB4 isoforms is evolutionarily conserved to humans. This single-pair probe ISH approach, known as BaseScope, could serve as an invaluable diagnostic tool to detect alternative spliced isoforms, and potentially single base polymorphisms, associated with disease.


Assuntos
Processamento Alternativo/genética , Hibridização In Situ/métodos , RNA/genética , Envelhecimento/metabolismo , Animais , Sequência de Bases , Encéfalo/metabolismo , Linhagem da Célula , Éxons/genética , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Humanos , Camundongos Knockout , Oligodendroglia/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sondas RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Sensibilidade e Especificidade
5.
PLoS One ; 12(5): e0176295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467439

RESUMO

Neurons in anterior cingulate cortex (aCC) project to dorsomedial striatum (DMS) as part of a corticostriatal circuit with putative roles in learning and other cognitive functions. In the present study, the spatial-cognitive importance of aCC and DMS was assessed in the hidden-platform version of the Morris water maze (MWM). Brain lesion experiments that focused on areas of connectivity between these regions indicated their involvement in spatial cognition. MWM learning curves were markedly delayed in DMS-lesioned mice in the absence of other major functional impairments, whereas there was a more subtle, but still significant influence of aCC lesions. Lesioned mice displayed impaired abilities to use spatial search strategies, increased thigmotaxic swimming, and decreased searching in the proximity of the escape platform. Additionally, aCC and DMS activity was compared in mice between the early acquisition phase (2 and 3 days of training) and the over-trained high-proficiency phase (after 30 days of training). Neuroplasticity-related expression of the immediate early gene Arc implicated both regions during the goal-directed, early phases of spatial learning. These results suggest the functional involvement of aCC and DMS in processes of spatial cognition that model associative cortex-dependent, human episodic memory abilities.


Assuntos
Cognição , Corpo Estriado/fisiologia , Giro do Cíngulo/fisiologia , Comportamento Espacial , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
6.
Biochim Biophys Acta Proteins Proteom ; 1865(7): 936-945, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27760390

RESUMO

The Morris water maze (MWM) spatial learning task has been demonstrated to involve a cognitive switch of action control to serve the transition from an early towards a late learning phase. However, the molecular mechanisms governing this switch are largely unknown. We employed MALDI MS imaging (MSI) to screen for changes in expression of small proteins in brain structures implicated in the different learning phases. We compared mice trained for 3days and 30days in the MWM, reflecting an early and a late learning phase in relation to the acquisition of a spatial learning task. An ion with m/z of 6724, identified as PEP-19/pcp4 by top-down tandem MS, was detected at higher intensity in the dorsal striatum of the late learning phase group compared with the early learning phase group. In addition, mass spectrometric analysis of synaptosomes confirmed the presence of PEP-19/pcp4 at the synapse. PEP-19/pcp4 has previously been identified as a critical determinant of synaptic plasticity in locomotor learning. Our findings extend PEP-19/pcp4 function to spatial learning in the forebrain and put MSI forward as a valid and unbiased research strategy for the discovery and identification of the molecular machinery involved in learning, memory and synaptic plasticity. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Aprendizagem Espacial/fisiologia , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Feminino , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/patologia , Locomoção/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
Brain Struct Funct ; 220(3): 1273-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24562414

RESUMO

Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic 'somatic' and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to 'intrinsic' learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/genética , Fatores de Tempo
8.
J Comp Neurol ; 522(4): 950-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037705

RESUMO

Monocular enucleation (ME) drastically affects the contralateral visual cortex, where plasticity phenomena drive specific adaptations to compensate for the unilateral loss of vision. In adult mice, complete reactivation of deprived visual cortex involves an early visually driven recovery followed by multimodal plasticity 3 to 7 weeks post ME (Van Brussel et al. [2011] Cereb. Cortex 21:2133-2146). Here, we specifically investigated the age dependence of the onset and the exact timing of both ME-induced reactivation processes by comparing cortical activity patterns of mice enucleated at postnatal day (P) 45, 90, or 120. A swifter open-eye potentiated reactivation characterized the binocular visual cortex of P45 mice. Nevertheless, even after 7 weeks, the reactivation remained incomplete, especially in the monocular cortex medial to V1. In comparison with P45, emergent cross-modal participation was demonstrated in P90 animals, although robust reactivation similar to enucleated adults (P120) was not achieved yet. Concomitantly, at 7 weeks post ME, somatosensory and auditory cortex shifted from a hypoactive state in P45 to hyperactivity in P120. Thus, we provide evidence for a presensitive period in which gradual recruitment of cross-modal recovery upon long-term ME coincides with the transition from adolescence to adulthood in mice.


Assuntos
Envelhecimento , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Visão Monocular , Córtex Visual/fisiologia , Fatores Etários , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas
9.
Proc Natl Acad Sci U S A ; 110(8): 3131-6, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382228

RESUMO

The multiple memory systems hypothesis posits that dorsal striatum and hippocampus are central nodes in independent memory systems, supporting response-based and place-based learning, respectively. Although our understanding of the function of hippocampus within this framework is relatively well established, the contribution of dorsal striatum is less clear. This in part seems to be due to the heterogeneous nature of dorsal striatum, which receives extensive topographically organized projections from higher cortical areas. Here we quantified neural activity in the intact brain while mice and humans acquired analogous versions of the Morris water maze. We found that dorsomedial striatum and medial prefrontal cortex support the initial acquisition of what is typically considered a hippocampus-dependent spatial learning task. We suggest that the circuit involving dorsomedial striatum and medial prefrontal cortex identified here plays a more task-independent role in early learning than currently thought. Furthermore, our results demonstrate that dorsomedial and dorsolateral striatum serve fundamentally different roles during place learning. The remarkably high degree of anatomical overlap in brain function between mouse and human observed in our study emphasizes the extent of convergence achievable with a well-matched multilevel approach.


Assuntos
Corpo Estriado/fisiologia , Aprendizagem em Labirinto , Córtex Pré-Frontal/fisiologia , Adulto , Animais , Feminino , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Adulto Jovem
10.
Brain Res Bull ; 94: 71-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357176

RESUMO

Neonatal lesioning of the ventral hippocampus (vHc) in rats has served as a useful heuristic animal model to elucidate neurodevelopmental mechanisms of schizophrenia (SCZ). In the current study we have established that this procedure can be applied to model SCZ symptomatology in mice. Neonatal mice (postnatal day 6) were anaesthetised by hypothermia and electrolytic lesions of the vHc were induced. We observed locomotor hyperactivity at prepubertal and adult age and hypersensitivity to amphetamine. Furthermore, working memory deficits were observed in Y-maze (spontaneous alternation) and T-maze (exploration of a novel arm) test protocols. Decreased anxious behaviour in the elevated plus maze and increased sociability were also observed. These changes were dependent on lesion size. No differences were observed in prepulse inhibition of the startle reflex, latent inhibition, spatial memory (Morris water maze), problem solving capacities (syringe puzzle) and ability to discriminate between different unfamiliar mice. The presented findings might further help to identify neurobiological mechanisms of neurodevelopmental disorders.


Assuntos
Encefalopatias/complicações , Modelos Animais de Doenças , Hipocampo/cirurgia , Animais , Animais Recém-Nascidos , Comportamento Animal , Encefalopatias/etiologia , Hipocampo/lesões , Hipocampo/fisiopatologia , Hipercinese/etiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Esquizofrenia/fisiopatologia
11.
J Exp Neurosci ; 7: 61-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25157209

RESUMO

We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation.

12.
Neurobiol Dis ; 51: 144-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23153818

RESUMO

Neurobeachin (NBEA), a brain-enriched multidomain scaffolding protein involved in neurotransmitter release and synaptic functioning, has been identified as a candidate gene for autism spectrum disorder (ASD) in four unrelated patients haploinsufficient for NBEA. The aim of this study was to map the behavioral phenotype of Nbea(+/-) mice in order to understand its contribution to the pathogenesis of ASD. ASD-like behavioral variables of Nbea(+/-) mice were related to basal neuronal activity in different brain regions by in situ hybridizations and extracellular field recordings of synaptic plasticity in hippocampal cornu ammonis 1 (CA1) region. Levels of BDNF and phosphorylated cAMP response element-binding protein (CREB) were measured in an attempt to investigate putatively underlying changes in these neuromolecules. Nbea(+/-) mice exhibit several ASD-like features, including changes in self-grooming behavior, social behaviors, conditioned fear responses, and spatial learning and memory, which coincided with enhanced long-term potentiation (LTP) in their CA1 region. The observed alterations in learning and memory and hippocampal LTP are concomitant with decreased expression of the immediate early gene zif268 in dorsomedial striatum and hippocampal CA1 region, increased CREB phosphorylation, and increased hippocampal BDNF expression. These findings indicate that Nbea haploinsufficiency leads to various molecular and cellular changes that affect neuroplasticity and behavioral functions in mice, and could thus underlie the ASD symptomatology in NBEA deficient humans.


Assuntos
Transtorno Autístico/genética , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Animais , Criança , Feminino , Haploinsuficiência , Humanos , Immunoblotting , Hibridização In Situ , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Transmissão Sináptica/genética
13.
Brain Struct Funct ; 218(1): 123-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22314660

RESUMO

AMIGO2, or amphoterin-induced gene and ORF (open reading frame) 2, belongs to the leucine-rich repeats and immunoglobulin superfamilies. The protein is a downstream target of calcium-dependent survival signals and, therefore, promotes neuronal survival. Here, we describe the mRNA distribution pattern of AMIGO2 throughout the mouse brain with special emphasis on the hippocampus. In the Ammon's horn, a detailed comparison between the subregional mRNA expression patterns of AMIGO2 and Pcp4 (Purkinje cell protein 4)--a known molecular marker of hippocampal CA2 (Cornu Ammonis 2)--revealed a prominent AMIGO2 mRNA expression level in both the CA2 and the CA3a (Cornu Ammonis 3a) subregion of the dorsal and ventral hippocampus. Since this CA2/CA3a region is particularly resistant to neuronal injury and neurotoxicity [Stanfield and Cowan (Brain Res 309(2):299­307 1984); Sloviter (J Comp Neurol 280(2):183­196 1989); Leranth and Ribak (Exp Brain Res 85(1):129­136 1991); Young and Dragunow (Exp Neurol 133(2):125­137 1995); Ochiishi et al. (Neurosci 93(3):955­967 1999)], we suggest that the expression pattern of AMIGO2 indeed fits with its involvement in neuroprotection.


Assuntos
Região CA2 Hipocampal/química , Região CA3 Hipocampal/química , Proteínas de Membrana/genética , Neurônios/química , RNA Mensageiro/análise , Animais , Região CA2 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Regulação da Expressão Gênica , Marcadores Genéticos , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética
14.
Neurobiol Learn Mem ; 95(3): 260-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21130175

RESUMO

Phosphodiesterase 10A (PDE10A) hydrolyzes both cAMP and cGMP, and is a key element in the regulation of medium spiny neuron (MSN) activity in the striatum. In the present report, we investigated the effects of targeted disruption of PDE10A on spatial learning and memory as well as aversive and appetitive conditioning in C57BL/6J mice. Because of its putative role in motivational processes and reward learning, we also determined the expression of the immediate early gene zif268 in striatum and anterior cingulate cortex. Animals showed decreased response rates in scheduled appetitive operant conditioning, as well as impaired aversive conditioning in a passive avoidance task. Morris water maze performance revealed not-motor related spatial learning and memory deficits. Anxiety and social explorative behavior was not affected in PDE10A-deficient mice. Expression of zif268 was increased in striatum and anterior cingulate cortex, which suggests alterations in the neural connections between striatum and anterior cingulate cortex in PDE10A-deficient mice. The changes in behavior and plasticity in these PDE10A-deficient mice were in accordance with the proposed role of striatal MSNs and corticostriatal connections in evaluative salience attribution.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Comportamento Exploratório/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Análise de Variância , Animais , Comportamento Apetitivo/fisiologia , Discriminação Psicológica/fisiologia , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Neostriado/metabolismo , Neostriado/fisiologia , Diester Fosfórico Hidrolases/genética , Comportamento Social , Estatísticas não Paramétricas
15.
Cereb Cortex ; 19(12): 2982-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19386633

RESUMO

Retinal lesions induce a topographic reorganization in the corresponding lesion projection zone (LPZ) in the visual cortex of adult cats. To gain a better insight into the reactivation dynamics, we investigated the alterations in cortical activity throughout area 17. We implemented in situ hybridization and real-time polymerase chain reaction to analyze the spatiotemporal expression patterns of the activity marker genes zif268 and c-fos. The immediate early gene (IEG) data confirmed a strong and permanent activity decrease in the center of the LPZ as previously described by electrophysiology. A recovery of IEG expression was clearly measured in the border of the LPZ. We were able to register reorganization over 2.5-6 mm. We also present evidence that the central retinal lesions concomitantly influence the activity in far peripheral parts of area 17. Its IEG expression levels appeared dependent of time and distance from the LPZ. We therefore propose that coupled changes in activity occur inside and outside the LPZ. In conclusion, alterations in activity reporter gene expression throughout area 17 contribute to the lesion-induced functional reorganization.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Plasticidade Neuronal , Proteínas Proto-Oncogênicas c-fos/metabolismo , Retina/lesões , Retina/fisiopatologia , Córtex Visual/fisiopatologia , Animais , Gatos , Fatores de Tempo
16.
Behav Neurosci ; 123(1): 109-14, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170435

RESUMO

The hippocampus (HC) has been suggested to play a role in transitive inference (TI) on an ordered sequence of stimuli. However, it has remained unclear whether HC is involved in the expression of TI, or rather contributes to TI through its role in the acquisition of the sequence of elements (Frank, Rudy, & O'Reilly, 2003). Presently, the authors compared the effects of excitotoxic dorsal HC lesions in C57BL mice that received surgery before or after they were trained to discriminate between pairs of visual stimuli. Performance on a subsequent TI task was worse in mice with pretraining lesions than in those with posttraining lesions, which showed similar performance to shams without lesions. This indicates that HC is not involved in the expression of TI, but may merely help to acquire the underlying representations required for TI.


Assuntos
Conscientização , Discriminação Psicológica/fisiologia , Hipocampo/fisiologia , Aprendizagem Seriada/fisiologia , Animais , Comportamento Animal , Feminino , Hipocampo/lesões , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA