Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106026

RESUMO

The µ-opioid receptor (µOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of µOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the µOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded µOR ligand and uncover the molecular basis for µOR antagonism by solving the cryo-EM structure of the NbE-µOR complex. NbE displays a unique ligand binding mode and achieves µOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a ß-hairpin loop formed by NbE that deeply inserts into the µOR and centers most binding contacts, we design short peptide analogues that retain µOR antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes novel µOR ligands that can serve as a basis for therapeutic developments.

2.
Front Mol Biosci ; 9: 863099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677880

RESUMO

The human genome encodes 850 G protein-coupled receptors (GPCRs), half of which are considered potential drug targets. GPCRs transduce extracellular stimuli into a plethora of vital physiological processes. Consequently, GPCRs are an attractive drug target class. This is underlined by the fact that approximately 40% of marketed drugs modulate GPCRs. Intriguingly 60% of non-olfactory GPCRs have no drugs or candidates in clinical development, highlighting the continued potential of GPCRs as drug targets. The discovery of small molecules targeting these GPCRs by conventional high throughput screening (HTS) campaigns is challenging. Although the definition of success varies per company, the success rate of HTS for GPCRs is low compared to other target families (Fujioka and Omori, 2012; Dragovich et al., 2022). Beyond this, GPCR structure determination can be difficult, which often precludes the application of structure-based drug design approaches to arising HTS hits. GPCR structural studies entail the resource-demanding purification of native receptors, which can be challenging as they are inherently unstable when extracted from the lipid matrix. Moreover, GPCRs are flexible molecules that adopt distinct conformations, some of which need to be stabilized if they are to be structurally resolved. The complexity of targeting distinct therapeutically relevant GPCR conformations during the early discovery stages contributes to the high attrition rates for GPCR drug discovery programs. Multiple strategies have been explored in an attempt to stabilize GPCRs in distinct conformations to better understand their pharmacology. This review will focus on the use of camelid-derived immunoglobulin single variable domains (VHHs) that stabilize disease-relevant pharmacological states (termed ConfoBodies by the authors) of GPCRs, as well as GPCR:signal transducer complexes, to accelerate drug discovery. These VHHs are powerful tools for supporting in vitro screening, deconvolution of complex GPCR pharmacology, and structural biology purposes. In order to demonstrate the potential impact of ConfoBodies on translational research, examples are presented of their role in active state screening campaigns and structure-informed rational design to identify de novo chemical space and, subsequently, how such matter can be elaborated into more potent and selective drug candidates with intended pharmacology.

3.
Front Immunol ; 13: 868579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720349

RESUMO

The chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, ß-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving ß-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the ß-arrestin-bias and the atypical nature of CXCR3-B.


Assuntos
Quimiocinas , Transdução de Sinais , Processamento Alternativo , Quimiocina CXCL11/metabolismo , Quimiocinas/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia
4.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341587

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Desdobramento de Proteína
5.
Angew Chem Int Ed Engl ; 60(18): 10247-10254, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33596327

RESUMO

G protein-coupled receptors (GPCRs) represent an important group of membrane proteins that play a central role in modern medicine. Unfortunately, conformational promiscuity hampers full therapeutic exploitation of GPCRs, since the largest population of the receptor will adopt a basal conformation, which subsequently challenges screens for agonist drug discovery programs. Herein, we describe a set of peptidomimetics able to mimic the ability of G proteins in stabilizing the active state of the ß2 adrenergic receptor (ß2 AR) and the dopamine 1 receptor (D1R). During fragment-based screening efforts, these (un)constrained peptide analogues of the α5 helix in Gs proteins, were able to identify agonism pre-imprinted fragments for the examined GPCRs, and as such, they behave as a generic tool, enabling an engagement in agonist earmarked discovery programs.


Assuntos
Descoberta de Drogas , Proteínas de Ligação ao GTP/agonistas , Peptidomiméticos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/química , Receptores Acoplados a Proteínas G/metabolismo
7.
Nat Commun ; 10(1): 2636, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201318

RESUMO

The leading cause of cystic fibrosis (CF) is the deletion of phenylalanine 508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutation affects the thermodynamic stability of the domain and the integrity of the interface between NBD1 and the transmembrane domain leading to its clearance by the quality control system. Here, we develop nanobodies targeting NBD1 of human CFTR and demonstrate their ability to stabilize both isolated NBD1 and full-length protein. Crystal structures of NBD1-nanobody complexes provide an atomic description of the epitopes and reveal the molecular basis for stabilization. Furthermore, our data uncover a conformation of CFTR, involving detachment of NBD1 from the transmembrane domain, which contrast with the compact assembly observed in cryo-EM structures. This unexpected interface rearrangement is likely to have major relevance for CF pathogenesis but also for the normal function of CFTR and other ABC proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Modelos Moleculares , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Anticorpos de Domínio Único/metabolismo
9.
Nature ; 566(7742): 79-84, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675062

RESUMO

Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains-the 7-transmembrane domains-in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.


Assuntos
Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Regulação Alostérica , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Humanos , Ligantes , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica , Receptor de Glutamato Metabotrópico 5/ultraestrutura
10.
Neuron ; 98(5): 963-976.e5, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754753

RESUMO

Opioid receptors (ORs) precisely modulate behavior when activated by native peptide ligands but distort behaviors to produce pathology when activated by non-peptide drugs. A fundamental question is how drugs differ from peptides in their actions on target neurons. Here, we show that drugs differ in the subcellular location at which they activate ORs. We develop a genetically encoded biosensor that directly detects ligand-induced activation of ORs and uncover a real-time map of the spatiotemporal organization of OR activation in living neurons. Peptide agonists produce a characteristic activation pattern initiated in the plasma membrane and propagating to endosomes after receptor internalization. Drugs produce a different activation pattern by additionally driving OR activation in the somatic Golgi apparatus and Golgi elements extending throughout the dendritic arbor. These results establish an approach to probe the cellular basis of neuromodulation and reveal that drugs distort the spatiotemporal landscape of neuronal OR activation.


Assuntos
Analgésicos Opioides/metabolismo , Membrana Celular/metabolismo , Dendritos/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores Opioides/metabolismo , Animais , Técnicas Biossensoriais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , D-Penicilina (2,5)-Encefalina/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular , Microscopia de Fluorescência , Morfina/metabolismo , Naloxona , Antagonistas de Entorpecentes , Ratos , Análise Espaço-Temporal
11.
Artigo em Inglês | MEDLINE | ID: mdl-29674997

RESUMO

Multi-membrane spanning proteins, such as G protein-coupled receptors (GPCRs) and ion channels, are extremely difficult to purify as native proteins. Consequently, the generation of antibodies that recognize the native conformation can be challenging. By combining genetic immunization, phage display, and biopanning, we identified a panel of monovalent antibodies (nanobodies) targeting the vasoactive intestinal peptide receptor 1 (VPAC1) receptor. The nine unique nanobodies that were classified into four different families based on their CDR3 amino acid sequence and length, were highly specific for the human receptor and bind VPAC1 with moderate affinity. They all recognize a similar epitope localized in the extracellular N-terminal domain of the receptor and distinct from the orthosteric binding site. In agreement with binding studies, which showed that the nanobodies did not interfere with VIP binding, all nanobodies were devoid of any functional properties. However, we observed that the binding of two nanobodies was slightly increased in the presence of VPAC1 agonists [vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27)], but decreased in the presence of VPAC1 antagonist. As no evidence of allosteric activity was seen in VIP binding studies nor in functional assays, it is, therefore, possible that the two nanobodies may behave as very weak allosteric modulators of VPAC1, detectable only in some sensitive settings, but not in others. We demonstrated that the fluorescently labeled nanobodies detect VPAC1 on the surface of human leukocytes as efficiently as a reference mouse monoclonal antibody. We also developed a protocol allowing efficient detection of VPAC1 by immunohistochemistry in paraffin-embedded human gastrointestinal tissue sections. Thus, these nanobodies constitute new original tools to further investigate the role of VPAC1 in physiological and pathological conditions.

12.
Angew Chem Int Ed Engl ; 57(19): 5292-5295, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469969

RESUMO

The conformational complexity of transmembrane signaling of G-protein-coupled receptors (GPCRs) is a central hurdle for the design of screens for receptor agonists. In their basal states, GPCRs have lower affinities for agonists compared to their G-protein-bound active state conformations. Moreover, different agonists can stabilize distinct active receptor conformations and do not uniformly activate all cellular signaling pathways linked to a given receptor (agonist bias). Comparative fragment screens were performed on a ß2 -adrenoreceptor-nanobody fusion locked in its active-state conformation by a G-protein-mimicking nanobody, and the same receptor in its basal-state conformation. This simple biophysical assay allowed the identification and ranking of multiple novel agonists and permitted classification of the efficacy of each hit in agonist, antagonist, or inverse agonist categories, thereby opening doors to nanobody-enabled reverse pharmacology.


Assuntos
Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Nanoestruturas/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Agonistas Adrenérgicos/química , Antagonistas Adrenérgicos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Estrutura Molecular
13.
Sci Transl Med ; 8(366): 366ra162, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881823

RESUMO

Ion channels are desirable therapeutic targets, yet ion channel-directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies-small, single-domain antibody fragments-may overcome these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5'-triphosphate released by damaged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1ß (IL-1ß). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human blood, Dano1 was 1000 times more potent in preventing IL-1ß release than small-molecule P2X7 antagonists currently in clinical development. Our results show that nanobody technology can generate potent, specific therapeutics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent new drug candidate that targets P2X7.


Assuntos
Trifosfato de Adenosina/química , Inflamação/imunologia , Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/química , Anticorpos de Domínio Único/química , Animais , Anticorpos Monoclonais/química , Morte Celular , Linhagem Celular , Proliferação de Células , Dermatite Alérgica de Contato/terapia , Feminino , Glomerulonefrite/terapia , Células HEK293 , Humanos , Interleucina-1beta/química , Ligantes , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Linfócitos T/citologia
14.
MAbs ; 8(6): 1126-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27211075

RESUMO

The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Imunização , Epitopos Imunodominantes/imunologia , Receptores de Glucagon/antagonistas & inibidores , Anticorpos de Cadeia Única/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Peptídeos Catiônicos Antimicrobianos , Células CHO , Camelídeos Americanos/imunologia , Catelicidinas/imunologia , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Cricetulus , Fibroblastos , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas de Membrana , Plasmídeos/genética , Plasmídeos/imunologia , Receptores de Glucagon/genética , Receptores de Glucagon/imunologia , Anticorpos de Cadeia Única/sangue
15.
ACS Synth Biol ; 5(10): 1070-1075, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27176489

RESUMO

Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.


Assuntos
Engenharia Genética/métodos , Pichia/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/genética , Animais , Células CHO , Camelídeos Americanos , Cricetulus , Biblioteca Gênica , Glicosilação , Engenharia Metabólica/métodos , Pichia/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Anticorpos de Domínio Único/metabolismo , Resposta a Proteínas não Dobradas/genética
16.
J Biol Chem ; 291(31): 16292-306, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226599

RESUMO

Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.


Assuntos
Anticorpos Monoclonais Murinos/química , Proteínas Associadas aos Microtúbulos/química , Neuropeptídeos/química , Anticorpos de Cadeia Única/química , Animais , Camelus , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Domínio Duplacortina , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Coelhos
17.
J Immunol ; 196(6): 2893-901, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864035

RESUMO

The generation of Abs that recognize the native conformation of G protein-coupled receptors can be a challenging task because, like most multimembrane-spanning proteins, they are extremely difficult to purify as native protein. By combining genetic immunization, phage display, and biopanning, we identified two functional monovalent Abs (nanobodies) targeting ChemR23. The two nanobodies (CA4910 and CA5183) were highly specific for the human receptor and bind ChemR23 with moderate affinity. Binding studies also showed that they share a common binding site that overlaps with that of chemerin, the natural ligand of ChemR23. Consistent with these results, we found that the nanobodies were able to antagonize chemerin-induced intracellular calcium increase. The inhibition was partial when chemerin was used as agonist and complete when the chemerin(149-157) nonapeptide was used as agonist. Engineering of a bivalent CA4910 nanobody resulted in a relatively modest increase in affinity but a marked enhancement of efficacy as an antagonist of chemerin induced intracellular calcium mobilization and a much higher potency against the chemerin(149-157) nonapeptide-induced response. We also demonstrated that the fluorescently labeled nanobodies detect ChemR23 on the surface of human primary cell populations as efficiently as a reference mouse mAb and that the bivalent CA4910 nanobody behaves as an efficient antagonist of chemerin-induced chemotaxis of human primary cells. Thus, these nanobodies constitute new tools to study the role of the chemerin/ChemR23 system in physiological and pathological conditions.


Assuntos
Células Dendríticas/metabolismo , Macrófagos/metabolismo , Receptores de Quimiocinas/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sinalização do Cálcio , Camelídeos Americanos , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Quimiocinas/metabolismo , DNA/administração & dosagem , Engenharia Genética , Humanos , Imunização , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
18.
Nature ; 524(7565): 375-8, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26245377

RESUMO

µ-Opioid receptors (µORs) are G-protein-coupled receptors that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the µOR in inactive and agonist-induced active states (Huang et al., ref. 2) provide snapshots of the receptor at the beginning and end of a signalling event, but little is known about the dynamic sequence of events that span these two states. Here we use solution-state NMR to examine the process of µOR activation using a purified receptor (mouse sequence) preparation in an amphiphile membrane-like environment. We obtain spectra of the µOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments 5 and 6 (TM5 and TM6), which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody, revealing a weak allosteric coupling between the agonist-binding pocket and the G-protein-coupling interface (TM5 and TM6), similar to that observed for the ß2-adrenergic receptor. Unexpectedly, in the presence of agonist alone, we find larger spectral changes involving intracellular loop 1 and helix 8 compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and intracellular loop 1 and/or helix 8 may be involved in G-protein coupling specificity, as has been suggested for other family A G-protein-coupled receptors.


Assuntos
Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Lisina/metabolismo , Camundongos , Modelos Moleculares , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Pirróis/química , Pirróis/metabolismo , Pirróis/farmacologia , Receptores Adrenérgicos beta 2/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Nature ; 524(7565): 315-21, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26245379

RESUMO

Activation of the µ-opioid receptor (µOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for µOR activation, here we report a 2.1 Å X-ray crystal structure of the murine µOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the µOR binding pocket are subtle and differ from those observed for agonist-bound structures of the ß2-adrenergic receptor (ß2AR) and the M2 muscarinic receptor. Comparison with active ß2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the µOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.


Assuntos
Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Pirróis/química , Pirróis/metabolismo , Pirróis/farmacologia , Receptor Muscarínico M2/química , Receptores Adrenérgicos beta 2/química , Receptores Opioides mu/agonistas , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Relação Estrutura-Atividade
20.
Nat Protoc ; 9(3): 674-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24577359

RESUMO

There is growing interest in using antibodies as auxiliary tools to crystallize proteins. Here we describe a general protocol for the generation of Nanobodies to be used as crystallization chaperones for the structural investigation of diverse conformational states of flexible (membrane) proteins and complexes thereof. Our technology has a competitive advantage over other recombinant crystallization chaperones in that we fully exploit the natural humoral response against native antigens. Accordingly, we provide detailed protocols for the immunization with native proteins and for the selection by phage display of in vivo-matured Nanobodies that bind conformational epitopes of functional proteins. Three representative examples illustrate that the outlined procedures are robust, making it possible to solve by Nanobody-assisted X-ray crystallography in a time span of 6-12 months.


Assuntos
Biotecnologia/métodos , Cristalização/métodos , Modelos Moleculares , Conformação Proteica , Anticorpos de Domínio Único/biossíntese , Animais , Camelus , Técnicas de Visualização da Superfície Celular , Clonagem Molecular , Primers do DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA