Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567011

RESUMO

In this work, we investigated the effect of carbon nanotubes addition and agglomeration formation on the mechanical and electrical properties of CNT-polymer-based nanocomposites. Six specimens with carbon nanotubes (CNTs) fractions of 0%, 0.5%, 1%, 2%, 4% and 5% were manufactured and characterized by dynamic mechanical analysis (DMA) and four-probe method. The stress-strain curves and electrical conductivity properties were obtained. Scanning electron microscopy (SEM) was used to characterize both agglomeration and porosity formation. By employing micromechanics, through representative volume element (RVE), finite element analysis (FEA) and resistor network model (RNM), the Young's modulus and electrical conductivity values were calculated. The samples' elastic moduli showed an increment, reaching the maximum value at a CNTs fraction of 2%, thereafter an adverse effect was caused in the high CNT percentage samples. The final electrical conductivity seemed greatly altered with the addition of CNTs, reaching the percolation threshold at 2%. The unavoidable formation of CNT agglomerates appeared to influence the final physical properties. The CNT agglomerates adversely affect the mechanical performance of high-CNT-percentage samples. Conversely, an exponential increment in the electrical conductivity was presented as the agglomerates formed networks allowing the transport of electrons through the tunnelling effect. These phenomena were experimentally and numerically confirmed, showing a good correlation.

2.
Polymers (Basel) ; 14(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406161

RESUMO

In this study, micro-size copper particles (less than 25 µm) were incorporated into polyurethane (PU) using a solution mixing method and spin-coating technique to fabricate composite films in concentrations from 0.5 to 20 vol.%. The conductivity behaviour of these composites under pressure was studied experimentally and numerically. The conductivity measurements were performed in-plane and through-thickness under pressure. It was found that changes in conductivity only occurred in the z-direction under an applied pressure from 1 to 20 kPa. The results showed that pressure could induce conductivity up to about 7.2 × 10-1 S∙m-1 for composites with a Cu concentration higher than 2.6 vol.%. It seems that applied pressure reduced the thickness of the polymer film, decreasing the distance between copper particles and promoting the formation of a conductive network, thus making the material conductive. A semi-analytical model that can accurately provide the percolation threshold (PT) concentration was used to fit the experimental conductivity. The PT concentrations for PU-Cu composite ranged from 7.1 vol.% to 1.4 vol.% and decreased with the rise in pressure. This is known as a pressure-induced percolation transition phenomenon (PIPT). Finally, the finite element method based on the representative volume element model (FE-RVE) simulation technique was used to predict the conductivity behaviour. This numerical simulation provided a good description of the experimental conductivity after the PT and correctly predicted the PT concentration. This study shows that FE-RVE could be used to effectively simulate the influence of pressure on the electrical properties of a polymer-metal composite, reducing the need for costly and time-consuming experiments.

3.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580474

RESUMO

The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

4.
Polymers (Basel) ; 12(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935924

RESUMO

The authors wish to make a change to the published paper [...].

5.
Materials (Basel) ; 12(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527429

RESUMO

Novel biomedical composites, based on organically modified vermiculite and montmorillonite with deposited Ca-deficient hydroxyapatite (CDH), were prepared. The monoionic sodium forms of vermiculite and montmorillonite were intercalated with chlorhexidine diacetate (CA). The surfaces of organoclays were used for the precipitation of Ca-deficient hydroxyapatite. The composites with Ca-deficient hydroxyapatite showed very good antibacterial effects, similar to the antimicrobial activity of pure organoclay samples. Better antibacterial activity was shown in the organically modified montmorillonite sample with Ca-deficient hydroxyapatite compared with the vermiculite composite, but, in the case of Staphylococcus aureus, both composites showed the same minimum inhibitory concentration (MIC) value. The antimicrobial effect of composites against bacteria and fungi increased with the time of exposure. The structural characterization of all the prepared materials, performed using X-ray diffraction and FT infrared spectroscopy analysis, detected no changes in the original clay or CDH during the intercalation or precipitation process, therefore we expect the strength of the compounds to be in the original power.

6.
Polymers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547357

RESUMO

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.

7.
Polymers (Basel) ; 11(5)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072028

RESUMO

The capability of Atomic Force Microscopy (AFM) to characterize composite material interfaces can help in the design of new carbon-based nanocomposites by providing useful information on the structure-property relationship. In this paper, the potentiality of AFM is explored to investigate the dispersion and the morphological features of aeronautical epoxy resins loaded with several carbon nanostructured fillers. Fourier Transform Infrared Spectroscopy (FTIR) and thermal investigations of the formulated samples have also been performed. The FTIR results show that, among the examined nanoparticles, exfoliated graphite (EG) with a predominantly two-dimensional (2D) shape favors the hardening process of the epoxy matrix, increasing its reaction rate. As evidenced by the FTIR signal related to the epoxy stretching frequency (907 cm-1), the accelerating effect of the EG sample increases as the filler concentration increases. This effect, already observable for curing treatment of 60 min conducted at the low temperature of 125 °C, suggests a very fast opening of epoxy groups at the beginning of the cross-linking process. For all the analyzed samples, the percentage of the curing degree (DC) goes beyond 90%, reaching up to 100% for the EG-based nanocomposites. Besides, the addition of the exfoliated graphite enhances the thermostability of the samples up to about 370 °C, even in the case of very low EG percentages (0.05% by weight).

8.
Langmuir ; 34(24): 7147-7152, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29800513

RESUMO

The properties of ceramic materials are dependent on crystal sizes and their distribution. These parameters can be controlled using electrospinning of the two-phase mixed system. The preceramic solution consists of silicon nanoparticles and polyacrylonitrile (PAN) polymer mixture. Particle distribution during the electrospinning technique was characterized using transmission electron microscopy and modeled using the finite element method. The experimental and numerical results were in agreement. Large silicon particles were located in the skin and the smaller ones were located at the core. This was illustrated by the migration rate from the core, which was the fastest for large particles and diminished as the particles become smaller in size. The threshold for Stokes number was found to be around 2.2 × 10-4 with a critical particle size of 1.0 × 10-7 m in diameter. The current results are very promising, as it demonstrated a novel way for the fabrication of PAN/Si ceramic nanofibers with a gradient of particle size and properties from the skin to the core.

9.
Polymers (Basel) ; 10(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30966701

RESUMO

In this study, indentation tests of graphene-based polymer nanocomposites were carried out to determine the local elastic mechanical properties. The samples consist of epoxy matrix with graphene additives. Additives were added at levels of 0% as a control, 0.5%, 1%, 2.5%, 5% and 10% by weight. The local elastic properties such as moduli and hardness were calculated. After each indentation, the prints were characterized using scanning electron microscopy (SEM). It seems that the local mechanical properties of nanocomposite samples were improved as the amount of nano-additives increased. Based on the curve displacement and surface imaging, we can conclude that the nano-additives influenced the overall plastic mechanical behavior of the samples. For simulating micro-indentation test, a finite element analysis model was developed using ABAQUS software and compared to experimental tests. Good correlation was observed.

10.
Nanotechnology ; 28(9): 094001, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135206

RESUMO

The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

11.
Clin Podiatr Med Surg ; 32(1): 73-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25440419

RESUMO

Carbon may represent an alternative material suitable for future development as a soft-tissue substitute that potentially optimizes the biological and mechanical properties required for a graft product used in surgery. In addition, other modes of characterization such as 3-dimensional computational modeling may offer an insight into material performance in a biological environment. Further investigation is required to characterize and model the relationships between biological, mechanical, and design properties of this material to maximize its potential as a biomechanical scaffold and vehicle for delivering biologics that promote tissue repair and regeneration.


Assuntos
Carbono , Pé/cirurgia , Regeneração Tecidual Guiada/instrumentação , Alicerces Teciduais , Técnicas de Cultura de Células , Módulo de Elasticidade , Fibroblastos/fisiologia , Humanos , Teste de Materiais , Porosidade , Resistência à Tração
12.
Tissue Eng Part A ; 20(23-24): 3176-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24875719

RESUMO

The objective of this study was to investigate the use of three fibrous carbon materials (T300, P25, and P120) for bone repair and develop and validate theoretical and computational methods in which bone tissue regeneration and repair could be accurately predicted. T300 was prepared from polyacrylonitrile precursor while P25 and P120 fibers were prepared from pitch, both common fiber precursors. Results showed that osteoblast growth on carbon scaffolds was enhanced with increased crystallinity, surface roughness, and material orientation. For unidirectional scaffolds at 120 h, there was 33% difference in cell growth between T300 and P25 fibers and 64% difference between P25 and P120 fibers. Moreover, for multidirectional fibers at 120 h, there was 35% difference in cell growth between T300 and P25 fibers and 43% difference between P25 and P120 fibers. Results showed that material alignment was integral to promoting cell growth with multidirectional scaffolds having the capacity for greater growth over unidirectional scaffolds. At 120 h there was 24% increase in cell growth between unidirectional alignment and multidirectional alignment on high-crystalline carbon fibers. Ultimately, data indicated that carbon scaffolds exhibited excellent bioactivity and may be tuned to stimulate unique reactions. Additionally, numerical and computational simulations provided evidence that corroborated experimental data with simulations. Results illustrated the capability of cellular automata models for assessing osteoblast cell response to biomaterials.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Osteoblastos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Resinas Acrílicas/química , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos
13.
Nanotechnology ; 24(30): 305704, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23843601

RESUMO

Heat treatment of carbon nanofibers has proven to be an effective method in removing defects from carbon nanofibers, causing a strong increase in their structural perfection and thermal stability. It affects the bonding states of carbon atoms in the nanofiber structure and causes a significant transformation in the hybridization state of the bonded carbon atoms.Nanofilled resins made of heat-treated CNF show significant increases in their electrical conductivity even at low concentrations. This confirms that enhancement in the perfection of the fiber structure with consequent change in the morphological features plays a prominent role in affecting the electrical properties. Indeed heat-treated CNFs display a stiff structure and a smooth surface which tends to lower the thickness of the unavoidable insulating epoxy layer formed around the CNF which, in turn, plays a fundamental role in the electrical transport properties along the conducting clusters. This might be very beneficial in terms of electrical conductivity but might have negligible effect on the mechanical properties.

14.
Chem Cent J ; 6: 17, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22410001

RESUMO

BACKGROUND: In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. RESULTS: Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. CONCLUSIONS: The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.

15.
Tissue Eng Part A ; 18(9-10): 946-56, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22092333

RESUMO

Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket(®) [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement construct.


Assuntos
Carbono/química , Lesões dos Tecidos Moles/terapia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adesão Celular/fisiologia , Proliferação de Células , Células Cultivadas , Humanos , Microscopia Eletrônica de Varredura
16.
ACS Nano ; 5(11): 8928-34, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22023292

RESUMO

The influence of amorphous carbon on FePt catalyst particles under chemical vapor deposition conditions typically applied for CNT growth is examined through two routes. In the first, FePt catalyst particles supported on alumina are exposed to a well-established cyclohexane thermal CVD reaction at various temperatures. At higher temperatures where self-pyrolysis leads to copious amorphous carbon and carbon tar formation, carbon nanotubes are still able to form. In the second route, an amorphous carbon film is first deposited over the catalyst particles prior to the CVD reaction. Even for reactions where further amorphous carbon is deposited due to self-pyrolysis, graphitization is still demonstrated. Our findings reveal that the presence of amorphous carbon does not prevent catalytic hydrocarbon decomposition and graphitization processes. We also show an additional catalytic reaction to be present, catalytic hydrogenation, a process in which carbon in contact with the catalyst surface reacts with H(2) to form CH(4).

17.
Tissue Eng Part A ; 14(2): 255-65, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18333778

RESUMO

Carbon-based materials are considered to be promising as implants because of their unique mechanical and biocompatibility properties. This article investigates the use of carbon-based materials as a functional interface for tissue scaffolds and medical implants. Three basic parameters were explored: graphene orientation, crystallinity, and surface interaction. These parameters were measured using optical microscopy, x-ray diffraction, and atomic force microscopy. To explore the effect of the orientation, samples were made with and without a preferred carbon orientation. Conversely, the crystallinity was studied using graphitic and carbonaceous matrices. Finally, the surface interaction study was carried out using oxygen surface functionalized and non-functionalized carbon fibers. Fluorescent, confocal, and environmental scanning microscopy were used to visualize cell response. The cell attachment, proliferation, and elongation were prevalent on the unidirectional carbon preform. Cells tended to orient parallel to the fiber axis (parallel to the 002 graphene plane) and proliferate as a function of higher crystallinity, although the addition of oxygen or other functional groups disrupted the interaction between cells and graphene surface and inhibited the growth. In conclusion, osteoblast (bone-forming cells) attachment and overall growth is a function of crystallite size, graphene orientation, and carbon graphitization.


Assuntos
Osteoblastos/citologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbono/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA