Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836718

RESUMO

Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 µg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 µg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.


Assuntos
Nanopartículas , Terapia com Prótons , Animais , Camundongos , Prótons , Terapia com Prótons/métodos , Zinco/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
2.
Appl Radiat Isot ; 132: 206-211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29183761

RESUMO

Monte Carlo (MC) has demonstrated to be a suitable technique to evaluate the microdosimetric parameters at the cellular level for Boron Neutron Capture Therapy (BNCT). The objectives of the current study are first to validate GAMOS MC codes with different Geant4 physics models for the range calculations of alpha particles. Once the proper physics is selected, the second objective is to determine the distributions of deposited energy in cellular medium originated by alpha and lithium-7 particles induced by 10B(n,α)7Li.

3.
Radiother Oncol ; 75(3): 342-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15967525

RESUMO

BACKGROUND AND PURPOSE: Absolute dose measurements for Intensity Modulated Radiotherapy (IMRT) beamlets is difficult due to the lack of lateral electron equilibrium. Recently we found that the absolute dosimetry in the penumbra region of the IMRT beamlet, can suffer from significant errors (Capote et al., Med Phys 31 (2004) 2416-2422). This work has the goal to estimate the error made when measuring the Planning Target Volume's (PTV) absolute dose by a micro ion chamber (microIC) in typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. MATERIALS AND METHODS: Two IMRT treatment plans for common prostate carcinoma case, derived by forward and inverse optimisation, were considered. Detailed geometrical simulation of the microIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the delivered dose to water and the dose delivered to the active volume of the ion chamber. However, the measured dose in water is usually derived from chamber readings assuming reference conditions. The MC simulation provides needed correction factors for ion chamber dosimetry in non reference conditions. RESULTS: Dose calculations were carried out for some representative beamlets, a combination of segments and for the delivered IMRT treatments. We observe that the largest dose errors (i.e. the largest correction factors) correspond to the smaller contribution of the corresponding IMRT beamlets to the total dose delivered in the ionization chamber within PTV. CONCLUSION: The clinical impact of the calculated dose error in PTV measured dose was found to be negligible for studied IMRT treatments.


Assuntos
Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Humanos , Masculino , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med Biol ; 50(5): 959-70, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15798268

RESUMO

Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes 0.1 cm3 are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (microIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the microIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (D(air)). The absorbed dose to water (D(water)) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the D(water)/D(air) dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the microIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Calibragem , Humanos , Íons , Masculino , Modelos Teóricos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Neoplasias da Próstata/radioterapia , Doses de Radiação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA