Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(9): 4176-4184, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387064

RESUMO

Photoxenobactin E (1) is a natural product with an unusual thiocarboxylic acid terminus recently isolated from an entomopathogenic bacterium. The biosynthetic gene cluster associated with photoxenobactin E, and other reported derivatives, is very similar to that of piscibactin, the siderophore responsible for the iron uptake among bacteria of the Vibrionaceae family, including potential human pathogens. Here, the reisolation of 1 from the fish pathogen Vibrio anguillarum RV22 cultured under iron deprivation, its ability to chelate Ga(III), and the full NMR spectroscopic characterization of the Ga(III)-photoxenobactin E complex are presented. Our results show that Ga(III)-photoxenobactin E in solution exists in a thiol-thione tautomeric equilibrium, where Ga(III) is coordinated through the sulfur (thiol form) or oxygen (thione form) atoms of the thiocarboxylate group. This report represents the first NMR study of the chemical exchange between the thiol and thione forms associated with thiocarboxylate-Ga(III) coordination, including the kinetics of the interconversion process associated with this tautomeric exchange. These findings show significant implications for ligand design as they illustrate the potential of the thiocarboxylate group as a versatile donor for hard metal ions such as Ga(III).


Assuntos
Metais , Tionas , Animais , Humanos , Metais/química , Ferro/química , Sideróforos/química , Compostos de Sulfidrila
2.
mSphere ; 9(1): e0059623, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38078732

RESUMO

The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.


Assuntos
Ilhas Genômicas , Compostos Organofosforados , Vibrio , Humanos , Ilhas Genômicas/genética , Transcriptoma , Lipopolissacarídeos , Vibrio/genética , DNA
3.
Inorg Chem ; 62(19): 7503-7514, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140938

RESUMO

Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.


Assuntos
Gálio , Sideróforos , Sideróforos/química , Teoria da Densidade Funcional , Ferro/química , Quelantes , Gálio/química , Tiazóis
4.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012135

RESUMO

Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens.


Assuntos
Vibrio , Vibrionaceae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas , Sideróforos/metabolismo , Vibrio/genética , Vibrio/metabolismo , Vibrionaceae/genética , Vibrionaceae/metabolismo , Fatores de Virulência/metabolismo
5.
J Biol Inorg Chem ; 27(1): 133-142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34792655

RESUMO

Piscibactin (Pcb) is a labile siderophore widespread among Vibrionaceae. Its production is a major virulence factor of some fish pathogens such as Photobacterium damselae subsp. piscicida and Vibrio anguillarum. Although FrpA was previously suggested as the putative outer membrane transporter (OMT) for ferri-piscibactin, its role in piscibactin uptake was never demonstrated. In this work, we generated mutants of V. anguillarum defective in FrpA and analyzed their ability to use piscibactin as iron source. The results showed that inactivation of frpA completely disables piscibactin utilization, and the original phenotype could be restored by gene complementation, confirming that FrpA is the OMT that mediates ferri-Pcb uptake. Additionally, the ability of several Pcb thiazole analogues, with different configurations at positions 9, 10, and 13, to be internalized through FrpA, was evaluated measuring their ability to promote growth under iron deficiency of several indicator strains. The results showed that while those analogues with a thiazole ring maintain almost the same activity as Pcb, the maintenance of the hydroxyl group present in natural piscibactin configuration at position C-13 is crucial for Fe3+ chelation and, in consequence, for the recognition of the ferri-siderophore by the cognate OMT. All these findings allowed us to propose a Pcb analogue as a good candidate to vectorize antimicrobial compounds, through the Trojan horse strategy, to develop novel compounds against bacterial fish diseases.


Assuntos
Doenças dos Peixes , Vibrio , Animais , Doenças dos Peixes/microbiologia , Proteínas de Membrana Transportadoras , Sideróforos/química , Vibrio/genética
6.
Front Microbiol ; 12: 748147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867865

RESUMO

The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.

7.
Front Microbiol ; 10: 2335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681201

RESUMO

Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.

8.
Front Microbiol ; 9: 1766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116232

RESUMO

Vibrio anguillarum causes vibriosis, a hemorrhagic septicaemia that affects many cultured marine fish species worldwide. Two catechol siderophores, vanchrobactin and anguibactin, were previously identified in this bacterium. While vanchrobactin is a chromosomally encoded system widespread in all pathogenic and environmental strains, anguibactin is a plasmid-encoded system restricted to serotype O1 strains. In this work, we have characterized, from a serotype O2 strain producing vanchrobactin, a novel genomic island containing a cluster of genes that would encode the synthesis of piscibactin, a siderophore firstly described in the fish pathogen Photobacterium damselae subsp. piscicida. The chemical characterization of this siderophore confirmed that some strains of V. anguillarum produce piscibactin. An in silico analysis of the available genomes showed that this genomic island is present in many of the highly pathogenic V. anguillarum strains lacking the anguibactin system. The construction of single and double biosynthetic mutants for vanchrobactin and piscibactin allowed us to study the contribution of each siderophore to iron uptake, cell fitness, and virulence. Although both siderophores are simultaneously produced, piscibactin constitute a key virulence factor to infect fish, while vanchrobactin seems to have a secondary role in virulence. In addition, a transcriptional analysis of the gene cluster encoding piscibactin in V. anguillarum showed that synthesis of this siderophore is favored at low temperatures, being the transcriptional activity of the biosynthetic genes three-times higher at 18°C than at 25°C. We also show that iron levels and temperature contribute to balance the synthesis of both siderophores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA