RESUMO
Background: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (5a-e). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction. Methods: The structural identification of the products was performed using various spectroscopic methods, such as IR, 1H, 13C, and HMBC NMR, HRMS, and single-crystal X-ray diffraction. To further examine the regioselectivity of the cycloaddition, Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level were employed. Additionally, the antioxidant potential of the compounds was tested in vitro using DPPH (2,2-Diphenyl-1-picrylhydrazyl)radical scavenging assays. The reaction selectively produced 3,5-disubstituted isoxazoles, with the regiochemical outcome being independent of the substituents on the phenyl ring. Results: Theoretical calculations using DFT were in agreement with the experimental results, revealing activation energies of -81.15 kcal/mol for P-1 and -77.32 kcal/mol for P-2, favoring the formation of P-1. An analysis of the Intrinsic Reaction Coordinate (IRC) confirmed that the reaction proceeded via a concerted but asynchronous mechanism. The antioxidant tests demonstrated that the synthesized compounds exhibited significant radical scavenging activity, as shown in the DPPH assay. The 1,3-dipolar cycloaddition of arylnitriloxides with N-propargylquinazolin-4(3H)-one successfully resulted in novel 3,5-disubstituted isoxazoles. Conclusions: The experimental findings were well-supported by theoretical predictions, and the antioxidant assays revealed strong activity, indicating the potential for future biological applications of these compounds.
RESUMO
A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.