Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 17(12): e0279548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584110

RESUMO

Cyclic nucleotide-gated (CNG) cation channels are important heterotetrameric proteins in the retina, with different subunit composition in cone and rod photoreceptor cells: three CNGA3 and one CNGB3 in cones and three CNGA1 and one CNGB1 in rods. CNGA and CNGB subunits form separate subfamilies. We have analyzed the evolution of the CNG gene family in metazoans, with special focus on vertebrates by using sequence-based phylogeny and conservation of chromosomal synteny to deduce paralogons resulting from the early vertebrate whole genome duplications (WGDs). Our analyses show, unexpectedly, that the CNGA subfamily had four sister subfamilies in the ancestor of bilaterians and cnidarians that we named CNGC, CNGD, CNGE and CNGF. Of these, CNGC, CNGE and CNGF were lost in the ancestor of Olfactores while CNGD was lost in the vertebrate ancestor. The remaining CNGA and CNGB genes were expanded by a local duplication of CNGA and the subsequent chromosome duplications in the basal vertebrate WGD events. Upon some losses, this resulted in the gnathostome ancestor having three members in the visual CNGA subfamily (CNGA1-3), a single CNGA4 gene, and two members in the CNGB subfamily (CNGB1 and CNGB3). The nature of chromosomal rearrangements in the vertebrate CNGA paralogon was resolved by including the genomes of a non-teleost actinopterygian and an elasmobranch. After the teleost-specific WGD, additional duplicates were generated and retained for CNGA1, CNGA2, CNGA3 and CNGB1. Furthermore, teleosts retain a local duplicate of CNGB3. The retention of duplicated CNG genes is explained by their subfunctionalisation and photoreceptor-specific expression. In conclusion, this study provides evidence for four previously unknown CNG subfamilies in metazoans and further evidence that the early vertebrate WGD events were instrumental in the evolution of the vertebrate visual and central nervous systems.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Duplicação Gênica , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Vertebrados/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
2.
Sci Rep ; 10(1): 5435, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214126

RESUMO

With a strong tendency to socialise, the zebrafish is a useful model to study social behaviour, with implications for better treatments of social impairments, for instance in autism spectrum disorders. Although oxytocin is crucial for social behaviour in mammals, the importance of the fish orthologue - isotocin or zebrafish oxytocin (zOT) - for social behaviour in zebrafish is unclear. The aims of this study were firstly, to elucidate the receptor specificity of zOT and the related vasotocin or zebrafish vasopressin (zVP; the orthologue of mammalian vasopressin) and the nonpeptidergic oxytocin receptor antagonist L-368,899, and secondly to investigate if L-368,899 inhibits social preference in zebrafish. The potencies of ligands were evaluated for zOT/zVP family receptors in HEK293 cells. Adult and larval zebrafish were treated with L-368,899 or vehicle and subsequently assessed for social behaviour and anxiety (adults only). The antagonist L-368,899 specifically inhibited the two zOT receptors, but not the two zVP-1 receptors. The antagonist decreased social preference in adult and larval zebrafish. It did not affect anxiety in adults. These results indicate that endogenous zOT, and possibly zVP, is involved in social behaviour in zebrafish via either or both of the two zOT receptors, and show promise for future explorations of the anatomy and evolution of networks underlying social behaviour.


Assuntos
Receptores de Ocitocina/fisiologia , Comportamento Social , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Canfanos/farmacologia , Células HEK293 , Humanos , Modelos Animais , Modelos Psicológicos , Ocitocina/fisiologia , Piperazinas/farmacologia , Receptores de Ocitocina/antagonistas & inibidores , Vasotocina/fisiologia
3.
Vision Res ; 166: 43-51, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855667

RESUMO

A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.


Assuntos
Ritmo Circadiano/fisiologia , Visão de Cores/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/enzimologia , Proteínas de Peixe-Zebra/genética , Animais , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Peixe-Zebra
4.
BMC Evol Biol ; 16(1): 124, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296292

RESUMO

BACKGROUND: Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. RESULTS: We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. CONCLUSIONS: Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Evolução Molecular , Transdução de Sinal Luminoso/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Expressão Gênica , Genoma , Filogenia , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Sintenia , Peixe-Zebra/genética
5.
Gen Comp Endocrinol ; 222: 106-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26255155

RESUMO

The vertebrate gene family for neuropeptide Y (NPY) receptors expanded by duplication of the chromosome carrying the ancestral Y1-Y2-Y5 gene triplet. After loss of some duplicates, the ancestral jawed vertebrate had seven receptor subtypes forming the Y1 (including Y1, Y4, Y6, Y8), Y2 (including Y2, Y7) and Y5 (only Y5) subfamilies. Lampreys are considered to have experienced the same chromosome duplications as gnathostomes and should also be expected to have multiple receptor genes. However, previously only a Y4-like and a Y5 receptor have been cloned and characterized. Here we report the cloning and characterization of two additional receptors from the sea lamprey Petromyzon marinus. Sequence phylogeny alone could not with certainty assign their identity, but based on synteny comparisons of P. marinus and the Arctic lamprey, Lethenteron camtschaticum, with jawed vertebrates, the two receptors most likely are Y1 and Y2. Both receptors were expressed in human HEK293 cells and inositol phosphate assays were performed to determine the response to the three native lamprey peptides NPY, PYY and PMY. The three peptides have similar potencies in the nanomolar range for Y1. No obvious response to the three peptides was detected for Y2. Synteny analysis supports identification of the previously cloned receptor as Y4. No additional NPY receptor genes could be identified in the presently available lamprey genome assemblies. Thus, four NPY-family receptors have been identified in lampreys, orthologs of the same subtypes as in humans (Y1, Y2, Y4 and Y5), whereas many other vertebrate lineages have retained additional ancestral subtypes.


Assuntos
Neuropeptídeo Y/genética , Petromyzon/crescimento & desenvolvimento , Receptores de Neuropeptídeo Y/genética , Animais , Células HEK293 , Humanos , Filogenia , Sintenia
6.
PLoS One ; 10(3): e0121330, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806532

RESUMO

Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation.


Assuntos
Duplicação Gênica , Glândula Pineal/metabolismo , Retina/metabolismo , Transducina/genética , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Transducina/metabolismo , Peixe-Zebra/metabolismo
7.
Nat Genet ; 46(6): 524-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24866184
8.
BMC Evol Biol ; 13: 238, 2013 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-24180662

RESUMO

BACKGROUND: Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). RESULTS: Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. CONCLUSIONS: We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Opsinas/genética , Filogenia , Vertebrados/genética , Animais , Peixes/genética , Genômica , Ocitocina/genética , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Sintenia , Transducina/genética
9.
Genomics ; 100(4): 203-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814267

RESUMO

Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/genética , Duplicação Gênica , Transducina/genética , Vertebrados/genética , Animais , Genoma , Humanos , Família Multigênica , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia
10.
PLoS One ; 6(8): e23565, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858168

RESUMO

This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.


Assuntos
Agressão/fisiologia , Dominação-Subordinação , Hierarquia Social , Peixe-Zebra/fisiologia , Adaptação Psicológica/fisiologia , Animais , Feminino , Masculino , Análise de Componente Principal , Análise de Regressão , Fatores Sexuais , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA