Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biotechnol ; 66(1): 26-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36988875

RESUMO

The occurrence of allergy, a type I hypersensitivity reaction, is rising exponentially all over the world. Sometimes, allergy proves to be fatal for atopic patients, due to the occurrence of anaphylaxis. This study is aimed to find an anti-allergic agent that can inhibit the binding of IgE to Human High Affinity IgE Receptor (FCεRI), thereby preventing the degranulation of mast cells. A considerable number of potential anti-allergic compounds were assessed for their inhibitory strength through ADMET studies. AUTODOCK was used for estimating the binding energy between anti-allergic compounds and FCεRI, along with the interacting amino acids. The docked pose showing favorable binding energy was subjected to molecular dynamics simulation study. Marrubiin, a diterpenoid lactone from Lamiaceae, and epicatechin-3-gallate appears to be effective in blocking the Human High Affinity IgE Receptor (FCεRI). This in-silico study proposes the use of marrubiin and epicatechin-3-gallate, in the downregulation of allergic responses. Due to the better inhibition constant, future direction of this study is to analyze the safety and efficacy of marrubiin in anti-allergic activities through in-vivo clinical human trials.


Assuntos
Anafilaxia , Antialérgicos , Diterpenos , Hipersensibilidade , Humanos , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Receptores de IgE/química , Receptores de IgE/metabolismo , Receptores de IgE/uso terapêutico , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Imunoglobulina E/uso terapêutico , Imunoinformática , Estudos Prospectivos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/metabolismo , Anafilaxia/tratamento farmacológico , Anafilaxia/prevenção & controle
2.
J Genet Eng Biotechnol ; 21(1): 64, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204693

RESUMO

BACKGROUND: Arsenic, a ubiquitous toxic metalloid, is a threat to the survival of all living organisms. Bioaccumulation of arsenic interferes with the normal physiological pathway. To overcome arsenic toxicity, organisms have developed arsenite methyltransferase enzyme, which methylates inorganic arsenite to organic arsenic MMA (III) in the presence of S-adenosylmethionine (SAM). Bacteria-derived arsM might be horizontally transported to different domains of life as arsM or as3mt (animal ortholog). A systematic study on the functional diversity of arsenite methyltransferase from various sources will be used in arsenic bioremediation. RESULTS: Several arsenite methyltransferase protein sequences of bacteria, fungi, fishes, birds, and mammals were retrieved from the UniProt database. In silico physicochemical studies confirmed the acidic, hydrophilic, and thermostable nature of these enzymes. Interkingdom relationships were revealed by performing phylogenetic analysis. Homology modeling was performed by SWISS-MODEL, and that was validated through SAVES-v.6.0. QMEAN values ranged from - 0.93 to - 1.30, ERRAT score (83-96), PROCHECK (88-92%), and other parameters suggested models are statistically significant. MOTIF and PrankWeb discovered several functional motifs and active pockets within the proteins respectively. The STRING database showed protein-protein interaction networks. CONCLUSION: All of our in silico studies confirmed the fact that arsenite methyltransferase is a cytosolic stable enzyme with conserved sequences over a wide range of organisms. Thus, because of its stable and ubiquitous nature, arsenite methyltransferase could be employed in arsenic bioremediation.

3.
Sci Rep ; 12(1): 8439, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589928

RESUMO

Contamination of soil by antibiotics and heavy metals originating from hospital facilities has emerged as a major cause for the development of resistant microbes. We collected soil samples surrounding a hospital effluent and measured the resistance of bacterial isolates against multiple antibiotics and heavy metals. One strain BMCSI 3 was found to be sensitive to all tested antibiotics. However, it was resistant to many heavy metals and metalloids like cadmium, chromium, copper, mercury, arsenic, and others. This strain was motile and potentially spore-forming. Whole-genome shotgun assembly of BMCSI 3 produced 4.95 Mb genome with 4,638 protein-coding genes. The taxonomic and phylogenetic analysis revealed it, to be a Bordetella petrii strain. Multiple genomic islands carrying mobile genetic elements; coding for heavy metal resistant genes, response regulators or transcription factors, transporters, and multi-drug efflux pumps were identified from the genome. A comparative genomic analysis of BMCSI 3 with annotated genomes of other free-living B. petrii revealed the presence of multiple transposable elements and several genes involved in stress response and metabolism. This study provides insights into how genomic reorganization and plasticity results in evolution of heavy metals resistance by acquiring genes from its natural environment.


Assuntos
Metais Pesados , Solo , Antibacterianos , Bordetella , Genômica , Hospitais , Metais Pesados/toxicidade , Filogenia
4.
Protein Pept Lett ; 28(10): 1099-1107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161203

RESUMO

BACKGROUND: The incidence of allergy has been increasing at an alarming rate over the last few decades. OBJECTIVE: Our present study aims to find out the structurally homologous motifs present in different proteinaceous allergens. METHODS: Significant number of protein sequences and their corresponding structures of various pollen, fungal, bacterial, and food allergens were retrieved and the sequence and structural identity were analyzed. RESULTS: Intra- and inter-sequence along with their structural analysis of the proteinaceous allergens revealed that no significant relationships exist among them. A few, but not the negligible number of high structural similarities, were observed within different groups of allergens from fungus, angiosperms, and animals (Aves and Mammalia). CONCLUSION: Our in silico study on thirty-six different allergens showed a significant level of structural similarities among themselves, regardless of their sequences.


Assuntos
Alérgenos/química , Fluprednisolona/análogos & derivados , Proteínas de Plantas/química , Sequência de Aminoácidos , Animais , Bactérias/química , Simulação por Computador , Bases de Dados Factuais , Fluprednisolona/química , Hipersensibilidade Alimentar/etiologia , Fungos/química , Humanos , Imunoglobulina E/metabolismo , Filogenia , Pólen/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA