Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 7: 104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564310

RESUMO

Bloch surface waves (BSWs) are sustained at the interface of a suitably designed one-dimensional (1D) dielectric photonic crystal and an ambient material. The elements that control the propagation of BSWs are defined by a spatially structured device layer on top of the 1D photonic crystal that locally changes the effective index of the BSW. An example of such an element is a focusing device that squeezes an incident BSW into a tiny space. However, the ability to focus BSWs is limited since the index contrast achievable with the device layer is usually only on the order of Δn≈0.1 for practical reasons. Conventional elements, e.g., discs or triangles, which rely on a photonic nanojet to focus BSWs, operate insufficiently at such a low index contrast. To solve this problem, we utilize an inverse photonic design strategy to attain functional elements that focus BSWs efficiently into spatial domains slightly smaller than half the wavelength. Selected examples of such functional elements are fabricated. Their ability to focus BSWs is experimentally verified by measuring the field distributions with a scanning near-field optical microscope. Our focusing elements are promising ingredients for a future generation of integrated photonic devices that rely on BSWs, e.g., to carry information, or lab-on-chip devices for specific sensing applications.

2.
J Med Signals Sens ; 7(3): 185-191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28840120

RESUMO

Rapid advances in biochemistry and genetics lead to expansion of the various medical instruments for detection and prevention tasks. On the other hand, food safety is an important concern which relates to the public health. One of the most reliable tools to detect bioparticles (i.e., DNA molecules and proteins) and determining the authenticity of food products is the optical ring resonators. By depositing a recipient polymeric layer of target particle on the periphery of an optical ring resonator, it is possible to identify the existence of molecules by calculating the shift in the spectral response of the ring resonators. The main purpose of this paper is to investigate the performance of two structures of optical ring resonators, (i) all-pass and (ii) add-drop resonators for sensing applications. We propose a new configuration for sensing applications by introducing a nanogap in the all-pass ring resonator. The performance of these resonators is studied from sensing point of view. Simulation results, using finite difference time domain paradigm, revealed that the existence of a nanogap in the ring configuration achieves higher amount of sensitivity; thus, this structure is more suitable for biosensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA