Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(10): eabj6799, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263132

RESUMO

In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer's theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer's theory. To address this problem, we have created a replica of such a system in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).

2.
Rev Sci Instrum ; 92(6): 063524, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243576

RESUMO

A new tri-particle mono-energetic backlighter based on laser-driven implosions of DT3He gas-filled capsules has been implemented at the OMEGA laser. This platform, an extension of the original D3He backlighter platform, generates 9.5 MeV deuterons from the T3He reaction in addition to 14.7 and 3.0 MeV protons from the deuterium and helium-3 reactants. The monoenergetic 14.7 and 3.0 MeV protons have been used with success at OMEGA and the NIF for both radiography and stopping-power studies. There are several advantages of having a third particle to diagnose plasma conditions: an extra time-of-flight-separated radiograph and an improved ability to discern between electric and magnetic fields. In cases where the 3.0 MeV protons cannot penetrate an experiment, the benefit of the additional 9.5 MeV deuterons is magnified. This capability is well-suited for NIF experiments, where large fields and plasma densities often preclude useful 3.0 MeV proton data. The advantages are demonstrated with radiographs of OMEGA plasmas with magnetic and electric fields. Tests using backlighter-scale 420 µm diameter thin glass capsules validate the platform's extended backlighting capability. The performance characteristics of this backlighter, such as source size and timing, are discussed.

3.
Rev Sci Instrum ; 89(10): 10I132, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399820

RESUMO

We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-µm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA