Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Chem ; 43(5): 784-96, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10715147

RESUMO

With the ultimate goal of identifying a consensus bioactive conformation of GnRH antagonists, the compatibility of a number of side chain to side chain bridges in bioactive analogues was systematically explored. In an earlier publication, cyclo[Asp(4)-Dpr(10)]GnRH antagonists with high potencies in vitro and in vivo had been identified.(1) Independently from Dutta et al. (2) and based on structural considerations, the cyclic [Glu(5)-Lys(8)] constraint was also found to be tolerated in GnRH antagonists. We describe here a large number of cyclic (4-10) and (5-8) and dicyclic (4-10/5-8) GnRH antagonists optimized for affinity to the rat GnRH receptor and in vivo antiovulatory potency. The most potent monocyclic analogues were cyclo(4-10)[Ac-DNal(1), DFpa(2),DTrp(3),Asp(4),DArg(6),Xaa(10)]GnRH with Xaa = D/LAgl (1, K(i) = 1.3 nM) or Dpr (2, K(i) = 0.36 nM), which completely blocked ovulation in cycling rats after sc administration of 2.5 microgram at noon of proestrus. Much less potent were the closely related analogues with Xaa = Dbu (3, K(i) = 10 nM) or cyclo(4-10)[Ac-DNal(1), DFpa(2),DTrp(3),Glu(4),DArg(6),D/LAgl(10)]GnRH (4, K(i) = 1.3 nM). Cyclo(5-8)[Ac-DNal(1),DCpa(2),DTrp(3),Glu(5),DArg++ +(6),Lys(8), DAla(10)]GnRH (13), although at least 20 times less potent in the AOA than 1 or 2 with similar GnRHR affinity (K(i) = 0.84 nM), was found to be one of the most potent in a series of closely related cyclo(5-8) analogues with different bridge lengths and bridgehead chirality. The very high affinity of cyclo(5,5'-8)[Ac-DNal(1), DCpa(2),DPal(3),Glu(5)(betaAla),DArg(6),(D or L)Agl,(8)DAla(10)]GnRH 14 (K(i) = 0.15 nM) correlates well with its high potency in vivo (full inhibition of ovulation at 25 microgram/rat). Dicyclo(4-10/5-8)[Ac-DNal(1),DCpa(2),DTrp(3),Asp (4),Glu(5),DArg(6), Lys(8),Dpr(10)]GnRH (24, K(i) = 0.32 nM) is one-fourth as potent as 1 or 2, in the AOA; this suggests that the introduction of the (4-10) bridge in 13, while having little effect on affinity, restores functional/conformational features favorable for stability and distribution. To further increase potency of dicyclic antagonists, the size and composition of the (5-8) bridge was varied. For example, the substitution of Xbb(5') by Gly (30, K(i) = 0.16 nM), Sar (31, K(i) = 0.20 nM), Phe (32, K(i) = 0.23 nM), DPhe (33, K(i) = 120 nM), Arg (36, K(i) = 0.20 nM), Nal (37, K(i) = 4.2 nM), His (38, K(i) = 0.10 nM), and Cpa (39, K(i) = 0.23 nM) in cyclo(4-10/5,5'-8)[Ac-DNal(1),DCpa(2),DPal(3),Asp(4),G lu(5)(Xbb(5')), DArg(6),Dbu,(8)Dpr(10)]GnRH yielded several very high affinity analogues that were 10, ca. 10, 4, >200, 1, ca. 4, >2, and 2 times less potent than 1 or 2, respectively. Other scaffolds constrained by disulfide (7, K(i) = 2.4 nM; and 8, K(i) = 450 nM), cyclo[Glu(5)-Aph(8)] (16, K(i) = 20 nM; and 17, K(i) = 0.28 nM), or cyclo[Asp(5)-/Glu(5)-/Asp(5)(Gly(5'))-Amp(8)] (19, K(i) = 1.3 nM; 22, K(i) = 3.3 nM; and 23, K(i) = 3.6 nM) bridges yielded analogues that were less potent in vivo and had a wide range of affinities. The effects on biological activity of substituting DCpa or DFpa at position 2, DPal or DTrp at position 3, and DArg, DNal, or DCit at position 6 are also discussed. Interestingly, monocyclo(5-8)[Glu(5), DNal(6),Lys(8)]GnRH (18, K(i) = 1. (ABSTRACT TRUNCATED)


Assuntos
Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/síntese química , Peptídeos Cíclicos/síntese química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Antagonistas de Hormônios/química , Antagonistas de Hormônios/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Ovulação/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Relação Estrutura-Atividade
2.
J Med Chem ; 43(5): 797-806, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10715148

RESUMO

Careful analysis of the NMR structures of cyclo(4-10)[Ac-Delta(3)Pro(1),DFpa(2),DTrp(3),Asp(4),DNal (6), Dpr(10)]GnRH, dicyclo(4-10/5-8)[Ac-DNal(1),DCpa(2),DTrp(3), Asp(4), Glu(5),DArg(6),Lys(8),Dpr(10)]GnRH, and dicyclo(4-10/5, 5'-8)[Ac-DNal(1),DCpa(2),DPal(3),Asp(4), Glu(5)(Gly),DArg(6),Dbu(8), Dpr(10)]GnRH showed that, in the N-terminal tripeptide, a type II beta-turn around residues 1 and 2 was probable along with a gamma-turn around DTrp(3)/DPal(3). This suggested the possibility of constraining the N-terminus by the introduction of a cyclo(1-3) scaffold. Optimization of ring size and composition led to the discovery of cyclo(1-3)[Ac-DAsp(1),DCpa(2),DLys(3),DNal(6), DAla(10)]GnRH (5, K(i) = 0.82 nM), cyclo(1,1'-3)[Ac-DAsp(1)(Gly), DCpa(2),DOrn(3),DNal(6),DAla(10)]GnRH (13, K(i) = 0.34 nM), cyclo(1, 1'-3)[Ac-DAsp(1)(Gly),DCpa(2),DLys(3),DNal(6),DA la(10)]GnRH (20, K(i) = 0.14 nM), and cyclo(1,1'-3)[Ac-DAsp(1)(betaAla), DCpa(2), DOrn(3),DNal(6),DAla(10)]GnRH (21, K(i) = 0.17 nM), which inhibited ovulation significantly at doses equal to or lower than 25 microgram/rat. These results were particularly unexpected in view of the critical role(s) originally ascribed to the side chains of residues 1 and 3.(1) Other closely related analogues, such as those where the [DAsp(1)(betaAla), DOrn(3)] cycle of 21 was changed to [DOrn(1)(betaAla), DAsp(3)] of cyclo(1,1'-3)[Ac-DOrn(1)(betaAla), DCpa(2),DAsp(3),DNal(6),DAla(10)]GnRH (22, K(i) = 2.2 nM) or where the size of the cycle was conserved and [DAsp(1)(betaAla), DOrn(3)] was replaced by [DGlu(1)(Gly), DOrn(3)] as in cyclo(1, 1'-3)[Ac-DGlu(1)(Gly),DCpa(2),DOrn(3),DNal(6),DA la(10)]GnRH (23, K(i) = 4.2 nM), were approximately 100 and 25 times less potent in vivo, respectively. Analogues with ring sizes of 18 ¿cyclo(1, 1'-3)[Ac-DGlu(1)(Gly),DCpa(2),DLys(3),DNal(6),DA la(10)]GnRH (24)¿ and 19 ¿cyclo(1,1'-3)[Ac-DGlu(1)(betaAla),DCpa(2),DLys( 3),DNal(6), DAla(10)]GnRH (25)¿ atoms were also less potent than 21 with slightly higher K(i) values (1.5 and 2.2 nM, respectively). These results suggested that the N-terminal tripeptide was likely to assume a folded conformation favoring the close proximity of the side chains of residues 1 and 3. The dicyclic analogue dicyclo(1-3/4-10)[Ac-DAsp(1),DCpa(2),DLys(3),Asp (4),DNal(6), Dpr(10)]GnRH (26) was fully active at 500 microgram, with a K(i) value of 1 nM. The in vivo potency of 26 was at least 10-fold less than that of monocyclic cyclo(1-3)[Ac-DAsp(1),DCpa(2),DLys(3),DNal(6), DAla(10)]GnRH (5); this suggested the existence of unfavorable interactions between the now optimized and constrained (1-3) and (4-10) cyclic moieties that must interact as originally hypothesized. Tricyclo(1-3/4-10/5-8)[Ac-DGlu(1),DCpa(2), DLys(3),Asp(4),Glu(5), DNal(6),Lys(8),Dpr(10)] GnRH (27) was inactive at 500 microgram/rat with a corresponding low affinity (K(i) = 4.6 nM) when compared to those of the most potent analogues (K(i) < 0.5 nM).


Assuntos
Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/síntese química , Peptídeos Cíclicos/síntese química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Antagonistas de Hormônios/química , Antagonistas de Hormônios/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Ovulação/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Relação Estrutura-Atividade
3.
J Med Chem ; 42(16): 3175-82, 1999 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-10447963

RESUMO

In an earlier report we identified specific modifications and substitutions of corticotropin releasing factor (CRF) that led to the discovery of antagonists with extended duration of action as compared to that of astressin {cyclo(30-33)[DPhe(12),Nle(21),Glu(30), Lys(33),Nle(38)]hCRF((12)(-)(41))}. These additional modifications included elongation of the peptide chain by three residues at the N-terminus, its acetylation, and the [CalphaMeLeu(27)] substitution to yield cyclo(30-33)[DPhe(12), Nle(21),CalphaMeLeu(27),Glu(30), Lys(33),Nle(38)]Ac-hCRF((9)(-)(41)), which was found to be longer acting than astressin (Rivier, J.; et al. J. Med. Chem. 1998, 41, 5012-5019). To further increase the efficiency (potency, duration of action, and bioavailability) of this family of antagonists, we introduced two or more CalphaMe-leucine residues at positions shown in earlier studies to be favorable (Hernandez, J.-F.; et al. J. Med. Chem. 1993, 36, 2860-2867). Whereas the introduction of CalphaMe-leucine residues at positions 27 and either 18 (11), 37 (17), or 40 (19) resulted in dramatic increases in duration of inhibitory action in the adrenalectomized (adx) rat after intravenous injection, the same substitution at positions 27 and either 15 (7, 8), 17 (9), 19 (12, 13), or 41 (20) led to short acting analogues. Other substitutions by CalphaMeLeu at positions 27 and either 10 (4), 13 (5), 14 (6), 21 (14), 24 (15), 36 (16), or 38 (18) yielded analogues with duration of action intermediate between those mentioned above. Cyclo(30-33)[DPhe(12), Nle(21), CalphaMeLeu(27),Glu(30),Lys(33),Nle(38), CalphaMeLeu(40)]Ac-hCRF((9)(-)(41)) (astressin B, 19) was one of the most efficacious analogues of this series (>4 h inhibition of ACTH secretion at 25 microgram/adx rat). It was found to be even longer acting via subcutaneous administration in either an aqueous (>24 h inhibition of ACTH secretion at 100 microgram/adx rat) or lipid milieu (DMSO/peanut oil, >24 h inhibition of ACTH secretion at 30 microgram/adx rat) than after intravenous administration (<12 h inhibition of ACTH secretion at 100 microgram/adx rat). We concluded that Calpha-methylation at some positions may favor a bioactive conformation while also preventing degradation and/or elimination, resulting in significant extension of duration of action.


Assuntos
Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/síntese química , Fragmentos de Peptídeos/síntese química , Adrenalectomia , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Eletroforese Capilar , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
4.
J Med Chem ; 41(25): 5002-11, 1998 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-9836618

RESUMO

We hypothesized that covalent constraints such as side-chain to side-chain lactam rings would stabilize an alpha-helical conformation shown to be important for the recognition and binding of the human corticotropin-releasing factor (hCRF) C-terminal 33 residues to CRF receptors. These studies led to the discovery of cyclo(20-23)[DPhe12,Glu20,Lys23,Nle21,38]hCRF (12-41) and of astressin ¿cyclo(30-33)[DPhe12,Nle21,38,Glu30,Lys33]hCR F(12-41)¿, two potent CRF antagonists, and of cyclo(30-33)[Ac-Leu8,DPhe12,Nle21, Glu30,Lys33,Nle38]hCRF(8-41), the shortest sequence equipotent to CRF reported to date (Rivier et al. J. Med. Chem. 1998, 41, 2614-2620 and references therein). To test the hypothesis that the Glu20-Lys23 and Glu30-Lys33 lactam rings were favoring an alpha-helical conformation rather than a turn, we introduced a D-amino acid at positions 22, 31, and 32 in the respective rings. Whereas the introduction of a D-residue at position 31 was only marginally deleterious to potency (ca. 2-fold decrease in potency), introduction of a D-residue at position 22 and/or 32 was favorable (up to 2-fold increase in potency) in most of the cyclic hCRF, alpha-helical CRF, urotensin, and urocortin agonists and antagonists that were tested and was also favorable in linear agonists but not in linear antagonists; this suggested a unique and stabilizing role for the lactam ring. Introduction of a [DHis32] (6) or acetylation of the N-terminus (7) of astressin had a minor deleterious or a favorable influence, respectively, on duration of action. In the absence of structural data on these analogues, we conducted molecular modeling on an Ac-Ala13-NH2 scaffold in order to quantify the structural influence of specific L- and DAla6 and L- and DAla7 substitutions in [Glu5,Lys8]Ac-Ala13-NH2 in a standard alpha-helical configuration. Models of the general form [Glu5,LAla6 or DAla6,LAla7 or DAla7,Lys8]Ac-Ala13-NH2 were subjected to high-temperature molecular dynamics followed by annealing dynamics and minimization in a conformational search. A gentle restraint was applied to the 0-4, 1-5, and 8-12 O-H hydrogen bond donor-acceptor pairs to maintain alpha-helical features at the N- and C-termini. From these studies we derived a model in which the helical N- and C-termini of hCRF form a helix-turn-helix motif around a turn centered at residue 31. Such a turn brings Gln26 in close enough proximity to Lys36 to suggest introduction of a bridge between them. We synthesized dicyclo(26-36,30-33)[DPhe12,Nle21,Cys26,Glu30 ,Lys33,Cys36, Nle38]Ac-hCRF(9-41) which showed significant alpha-helical content using circular dichroism (CD) and had low, but measurable potency ¿0. 3% that of 6 or ca. 25% that of [DPhe12,Nle21,38]hCRF(12-41)¿. Since the 26-36 disulfide bridge is incompatible with a continuous alpha-helix, the postulate of a turn starting at residue 31 will need to be further documented.


Assuntos
Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Glutamina/química , Lisina/química , Fragmentos de Peptídeos/síntese química , Peptídeos Cíclicos/síntese química , Adrenalectomia , Hormônio Adrenocorticotrópico/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Células Cultivadas , Dicroísmo Circular , Hormônio Liberador da Corticotropina/química , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Adeno-Hipófise/citologia , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley
5.
J Med Chem ; 41(14): 2614-20, 1998 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-9651165

RESUMO

In three earlier publications (Miranda et al. J. Med. Chem. 1994, 37, 1450-1459; 1997, 40, 3651-3658; Gulyas et al. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 10575-10579) we have hypothesized that covalent constraints such as side-chain-to-side-chain lactam rings would stabilize an alpha-helical conformation shown to be important for the recognition and binding of the CRF C-terminus 30 residues, to CRF receptors. These studies led to the discovery of useful CRF antagonists such as alpha-helical CRF (alpha-hel-CRF) and Astressin both in vitro and in vivo. To test the hypothesis that such lactam rings may also be modulating activation of the receptor when introduced at the N-terminus of CRF, we studied the influence of the successive introduction from residues 4 to 14 of a cyclo(i, i+3)[Lysi-Glu(i+3)] and a cyclo(i,i+3)[Glui-Lys(i+3)] bridge on the in vitro potency of the agonist [Ac-Pro4,dPhe12,Nle21,38]hCRF(4-41) and related compounds. We have also introduced the favored cyclo(Glu30-Lys33) substitution found to be remarkable in several families of antagonists (such as Astressin) and in a number of CRF agonists and investigated the role of residues 4-8 on receptor activation using successive deletions. Earlier studies had shown that in both oCRF and alpha-helical CRF, deletion of residues 1-6, 1-7, and 1-8 led to gradual loss of intrinsic activity (IA) (from 50% IA to <10% IA) resulting in alpha-hel-CRF being a potent competitive antagonist. We show that acetylation of the N-terminus of these fragments generally increases potency by a factor of 2-3 with no influence on IA. While cyclo(30-33)[Ac-Leu8,dPhe12,Nle21, Glu30,Lys33,Nle38]hCRF(8-41) (30) is the shortest reported analogue of CRF to be equipotent to CRF (70% IA), the corresponding linear analogue (31) is 120 times less potent (59% IA). Addition of one amino acid at the N-terminus ¿cyclo(30-33)[Ac-Ser7,dPhe12,Nle21, Glu30,Lys33,Nle38]hCRF(7-41) (28)¿ results in a 5-fold increase in agonist potency and full intrinsic activity (113%). The most favored modifications were also introduced in other members of the CRF family including sauvagine (Sau), urotensin (Utn), urocortin (Ucn), and alpha-hel-CRF. Parallel and consistent results were obtained suggesting that the lactam cyclization at residues 29-32 and 30-33 (for the members of the CRF family with 40 and 41 amino acid residues, respectively) will induce (in the shortened agonists) a structural constraint (alpha-helix) that stabilizes a bioactive conformation similar to that shown in the Astressin family of CRF antagonists and that residue 8 (leucine or isoleucine) bears the sole responsibility for activation of the receptor since deletion of that residue leads to potent antagonists (Gulyas et al. Proc. Natl. Acad.Sci. U.S.A. 1995, 92, 10575-10579).


Assuntos
Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/síntese química , Glutamina/química , Lisina/química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/farmacologia , Eletroforese Capilar , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Adeno-Hipófise/citologia , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Ovinos , Relação Estrutura-Atividade
6.
J Med Chem ; 40(22): 3651-8, 1997 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-9357532

RESUMO

Hypothesis driven and systematic structure-activity relationship (SAR) investigations have resulted in the development of effective central nervous system (CNS) antagonists of corticotropin (ACTH)-releasing factor (CRF) such as alpha-helical CRF(9-41) and analogues of our assay standard [DPhe12,Nle21,38]hCRF(12-41). On the other hand, equally potent CRF antagonists that block the hypothalamic/pituitary/adrenal (HPA) axis had not been described until recently. Predictive methods, physicochemical measurements (nuclear magnetic resonance spectrometry and circular dichroism spectroscopy), and SAR studies suggest that CRF and its family members (urotensins and sauvagine) assume an alpha-helical conformation when interacting with CRF receptors. To further test this hypothesis, we have systematically scanned the hCRF(9-41) or hCRF(12-41) sequences with an i-(i + 3) bridge consisting of the Glu-Xaa-Xbb-Lys scaffold which we and others had shown could maintain or enhance alpha-helical structure. From this series we have identified seven analogues that are either equipotent to, or 3 times more potent than, the assay standard; in addition, as presented earlier cyclo(30-33)[DPhe12,-Nle21,38,Glu30, Lys33]hCRF(12-41) (astressin) is 32 times more potent than the assay standard in blocking ACTH secretion in vitro (rat pituitary cell culture assay). In vivo, astressin is also significantly more potent than earlier antagonists at reducing hypophysial ACTH secretion in intact stressed or adrenalectomized rats. Since the corresponding linear analogues that were tested are significantly less potent, our interpretation of the increased potency of the cyclic analogues is that the introduction of the side chain to side chain bridging element (Glu30-Lys33, and to a lesser extent that of Glu14-Lys17, Glu20-Lys23, Glu23-Lys26, Glu26-Lys29, Glu28-Lys31, Glu29-Lys32, and Glu33-Lys36) induces and stabilizes in the receptor environment a putative alpha-helical bioactive conformation of the fragment that is not otherwise heavily represented. The effect of the introduction of two favored substitutions [(cyclo(20-23) and cyclo(30-33)] yielded 37 with a potency 8 times that of the assay standard but actually 12 times less than expected if the effect of the two cycles had been multiplicative. These results suggest that the pituitary CRF receptor can discriminate between slightly different identifiable conformations, dramatically illustrating the role that secondary and tertiary structures play in modulating biological signaling through specific protein-ligand interactions.


Assuntos
Hormônio Liberador da Corticotropina/antagonistas & inibidores , Ácido Glutâmico/química , Lisina/química , Sequência de Aminoácidos , Animais , Células Cultivadas , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/farmacologia , Humanos , Masculino , Dados de Sequência Molecular , Adeno-Hipófise/citologia , Adeno-Hipófise/efeitos dos fármacos , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Homologia de Sequência de Aminoácidos , Análise Espectral
7.
Hum Reprod ; 11 Suppl 3: 133-47, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9147108

RESUMO

While the clinical significance of gonadotrophin-releasing hormone (GnRH) agonists is well recognized, the potential use of GnRH antagonists in humans awaits the availability of potent analogues with no untoward side-effects. We have designed, synthesized and tested several hundred linear and cyclic analogues (agonists and antagonists) of GnRH in different rat models; some have high histamine releasing activity and others have poor solubility in aqueous buffers with a pH > 6.0. Furthermore, we have identified analogues exhibiting short (< 12 h), intermediate (12-72 h) and long (> 72 h) duration of action in the rat (50 micrograms s.c. dose/rat). We have concluded that the basis for such resistance to degradation and elimination must be specific. In order to gain further information on the optimal nature and sterical requirements of side-chains, preliminary experiments were carried out using betidamino acids. Finally, mono- and dicyclic analogues of GnRH with potencies comparable with that of the most potent linear analogues were also obtained. Our approach to the development of such analogues included the use of nuclear magnetic resonance and computational techniques as well as that of state-of-the-art synthetic approaches. We intend to use the information derived from these structure/activity relationship studies to design conformationally-similar peptido-mimetics.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Ovulação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/farmacologia , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Ovulação/metabolismo , Ratos
8.
J Comp Neurol ; 364(2): 324-39, 1996 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-8788253

RESUMO

Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians.


Assuntos
Sistema Nervoso Central/química , Rana ridibunda/fisiologia , Urotensinas/análise , Animais , Especificidade de Anticorpos , Encéfalo/citologia , Química Encefálica , Sistema Nervoso Central/citologia , Cromatografia Líquida de Alta Pressão , Cação (Peixe) , Imuno-Histoquímica , Masculino , Neurônios Motores/química , Neuropeptídeos/análise , Neuropeptídeos/química , Neuropeptídeos/imunologia , Radioimunoensaio , Medula Espinal/química , Medula Espinal/citologia , Urotensinas/química , Urotensinas/imunologia
9.
Proc Natl Acad Sci U S A ; 92(23): 10575-9, 1995 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-7479843

RESUMO

Predictive methods, physicochemical measurements, and structure activity relationship studies suggest that corticotropin-releasing factor (CRF; corticoliberin), its family members, and competitive antagonists (resulting from N-terminal deletions) usually assume an alpha-helical conformation when interacting with the CRF receptor(s). To test this hypothesis further, we have scanned the whole sequence of the CRF antagonist [D-Phe12,Nle21,38]r/hCRF-(12-41) (r/hCRF, rat/human CRF; Nle, norleucine) with an i-(i + 3) bridge consisting of the Glu-Xaa-Xaa-Lys scaffold. We have found astressin [cyclo(30-33)[D-Phe12,Nle21,38,Glu30,Lys33]r/ hCRF(12-41)] to be approximately 30 times more potent than [D-Phe12,Nle21,38]r/hCRF-(12-41), our present standard, and 300 times more potent than the corresponding linear analog in an in vitro pituitary cell culture assay. Astressin has low affinity for the CRF binding protein and high affinity (Ki = 2 nM) for the cloned pituitary receptor. Radioiodinated [D-125I-Tyr12]astressin was found to be a reliable ligand for binding assays. In vivo, astressin is significantly more potent than any previously tested antagonist in reducing hypophyseal corticotropin (ACTH) secretion in stressed or adrenalectomized rats. The cyclo(30-33)[Ac-Pro4,D-Phe12,Nle21,38,Glu30,Lys33++ +]r/hCRF-(4-41) agonist and its linear analog are nearly equipotent, while the antagonist astressin and its linear form vary greatly in their potencies. This suggests that the lactam cyclization reinstates a structural constraint in the antagonists that is normally induced by the N terminus of the agonist.


Assuntos
Hormônio Liberador da Corticotropina/análogos & derivados , Peptídeos/farmacologia , Adrenalectomia , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Bioensaio , Células Cultivadas , Dicroísmo Circular , Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Eletroforese Capilar , Eletrochoque , Masculino , Conformação Molecular , Dados de Sequência Molecular , Adeno-Hipófise/citologia , Ratos
10.
Endocrinology ; 136(3): 1097-102, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7867564

RESUMO

CRF-binding protein (CRF-BP), identified as a 37-kilodalton human serum protein, binds human (h) CRF (Kd = 0.17 +/- 0.01 nM) and blocks hCRF's ability to stimulate ACTH release by pituitary cells in vitro. The present study examines ligand requirements of CRF-BP by testing the affinity of recombinant CRF-BP for synthetic analogs of CRF and peptides in the CRF family. The relative affinities of various fragments of hCRF or related peptides for CRF-BP indicate that residues 9-28 are crucial for ligand binding. CRF-BP binds human/rat CRF and urotensin-I with high affinity, sauvagine with moderate affinity, and ovine (o) CRF with low affinity. The marked difference in the affinity of CRF-BP for oCRF (Ki = 1100 +/- 97 nM) compared to hCRF (Ki = 0.17 +/- 0.01 nM), when considered with the importance of the central domain, suggests that amino acids 22, 23, and/or 25 are critical for binding. Altering oCRF residues 22, 23, or 25 individually or collectively to match those of hCRF increases the affinity of CRF-BP for these ligands; [Ala22, Arg23, Glu25]oCRF, in which all three of these central amino acids are substituted by their hCRF counterparts, binds CRF-BP with an affinity equal to that of hCRF. CRF-BP has differential affinities for CRF receptor antagonists, binding alpha-helical CRF-(9-41) with high affinity and [D-Phe12, Nle21,38]hCRF-(12-41) with low affinity. Thus, the structural requirements for binding to CRF-BP can clearly be distinguished from those for CRF receptor recognition of both agonists and antagonists. Peptides such as hCRF-(9-33), with low biological activity but which retain high affinity for the binding protein, can competitively override the effects of CRF-BP to block CRF-induced ACTH secretion, raising the possibility that whereas endogenous CRF-BP serves to limit the distribution or duration of action of CRF, specific pharmacological inhibitors of the ligand-binding protein interaction might be used to therapeutically elevate free CRF levels.


Assuntos
Proteínas de Transporte/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Proteínas de Transporte/antagonistas & inibidores , Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Ligantes , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Proteínas Recombinantes
11.
J Med Chem ; 37(10): 1450-9, 1994 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-8182703

RESUMO

Corticotropin releasing factor (CRF) is a 41-peptide amide which stimulates the release of ACTH (Vale et al. Science 1981, 213, 1394). CRF has been postulated to assume an alpha-helical conformation upon binding to its pituitary receptor (Hernandez et al. J. Med. Chem. 1993, 36, 2860). We have exploited this hypothesis in the design of a limited series of cyclic analogues and have taken into consideration the effects of side-chain deletion (Alanine scan, Kornreich et al. J. Med. Chem. 1992, 35, 1870) as well as of changes in chirality (Rivier et al. J. Med. Chem. 1993, 36, 2851), with the rationale that side chains necessary for binding could also be replaced by side-chain bridges. In particular, we have used computer modeling to predict likely side chain bridging opportunities and evaluated the effects of such replacements by correlating biological results with those derived from CD spectroscopy. We have synthesized 38 monocyclic peptide amides, competitive antagonists of human/rat CRF, using solid-phase methodology on MBHA resin. After purification by preparative RP-HPLC, the peptides were analyzed by RP-HPLC and capillary zone electrophoresis and characterized by mass spectroscopy and amino acid analysis. CRF antagonists were tested for their ability to interfere with CRF-induced release of ACTH by rat anterior pituitary cells. In most cases, one of the bridge heads was located at a position where substitution by a D-residue was tolerated (i.e., positions 12 and 20). It has become clear that careful optimization of bridge length and chirality is critical. This is best exemplified by the fact that out of the 38 analogues that were synthesized and tested, only two, [cyclo(20-23)[DPhe12,Glu20,Lys23, Nle21,38]h/rCRF12-41 and cyclo(20-23)[DPhe12,Glu20,Orn23,Nle21,38] h/rCRF12-41], were found to be more potent (3 and 2 times, respectively) than [DPhe12,Nle21,38]h/rCRF12-41, the parent compound. Six analogues belonging to two different families were found to be half as potent as the standard, 18 had 2-20% of the potency of the standard, and the others were significantly less potent. CD results of all analogues in 50% TFE (a concentration of TFE that induced nearly maximum helicity of [DPhe12,Nle21,38]h/rCRF12-41) suggest that while helicity may be an important factor for CRF analogue recognition, little correlation is found between percent helicity as determined by spectral deconvolution and biological activity in vitro.


Assuntos
Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Dicroísmo Circular , Hormônio Liberador da Corticotropina/síntese química , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/farmacologia , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA