Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 135(3): 232-237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693775

RESUMO

The microparticle-enhanced cultivation (MPEC) was used to enhance the production of Antrodin C by submerged fermentation of medicinal mushroom Antrodia cinnamomea. The crucial factors such as types, sizes, concentrations, and addition time of microparticles were optimized. The mechanism of MPEC on the membrane permeability and fluidity of A. cinnamomea and the expression of key genes in Antrodin C were investigated. When talc (18 µm, 2 g/L) was added into the fermentation liquid at 0 h, the promoting effect on Antrodin C was the best. The maximum yield of Antrodin C was 1615.7 mg/L, which was about 2.98 times of the control (541.7 mg/L). Talc slightly damaged the mycelia of A. cinnamomea, increased the release of intracellular constituents, and enhanced the index of unsaturated fatty acid. In addition, the key genes (IDI, E2.3.3.10, HMGCR, atoB) that might play an important role in the synthesis of the triquine-type sesquiterpene Antrodin C, were upregulated. In conclusion, talc increased the permeability and fluidity of cell membrane, upregulated the key genes and improved the biosynthesis process to enhance the yield of Antrodin C in the submerged fermentation of A. cinnamomea.


Assuntos
Agaricales , Antrodia , Talco/metabolismo , Antrodia/genética , Antrodia/metabolismo
2.
Biotechnol Bioeng ; 118(7): 2503-2513, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755193

RESUMO

Morphology plays an important role in fungal fermentation and secondary metabolites biosynthesis. One novel technique, microparticle-enhanced cultivation was successfully utilized to control the morphology of Monascus purpureus precisely and enhance the yield of yellow pigments. The production of yellow pigments increased to 554.2 U/ml when 4 g/L 5000 mesh talc added at 24 h. Field emission scanning electron microscope observation indicated that the actual effect depends on the properties of microparticle. Sharp-edged microparticles showed better stimulatory effects than smooth, round-shaped ones. Particle size analysis, scanning electron microscope, and cell integrity evaluation proved obvious morphological changes were induced by talc addition, including smaller mycelial size, rougher hyphae, and decreased cell integrity. Furthermore, the expression levels of MrpigG, MrpigD, MrpigE, and MrpigH were significantly upregulated by the addition of talc. It indicated that the microparticle could not only affect the mycelial morphology, but also influence the expression levels of key genes in biosynthetic pathway of Monascus yellow pigments.


Assuntos
Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Monascus/crescimento & desenvolvimento , Pigmentos Biológicos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA