Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38634834

RESUMO

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).


Assuntos
Dióxido de Carbono , Euryarchaeota , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Taiwan , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Metano
2.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938098

RESUMO

A novel mesophilic, hydrogenotrophic methanogen, strain CYW5T, was isolated from a sediment sample of a piston core collected from submarine mud volcano MV5 located in the offshore area of southwestern Taiwan. Cells of strain CYW5T were irregular coccids, 0.5-1.0 µm in diameter and lysed easily by 0.01 % sodium dodecyl sulphate (SDS) treatment. Strain CYW5Tutilized formate or hydrogen plus carbon dioxide as catabolic substrates for methanogenesis. The optimal growth conditions were 37 °C, 0.043-0.085 M NaCl and pH 6.02-7.32. The genomic DNA G+C content calculated from the genome sequence of strain CYW5T was 56.2 mol%. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that strain CYW5T represented a member of the family Methanomicrobiaceae in the order Methanomicrobiales, and was closely related to the members of the genus Methanogenium. The most closely related species was Methanogenium cariaci JR1T (94.9 % of 16S rRNA gene sequence identity). The average nucleotide identity and average amino acid identity values between strain CYW5T and members of the family Methanomicrobiaceae were 74.7-78.5 % and 49.1-64.9%, respectively. Although many of the morphological and physiological characteristics of strain CYW5T and the species of the genus Methanogenium were similar, they were distinguishable by the differences in genomic G+C content and temperature, NaCl and pH ranges for growth. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CYW5T represents a novel species, of a novel genus, named Methanovulcanius yangii gen. nov., sp. nov. The type strain is CYW5T (=BCRC AR10048T=DSM 100756T=NBRC 111404T).


Assuntos
Euryarchaeota , Cloreto de Sódio , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Taiwan , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Peróxido de Hidrogênio , Methanomicrobiaceae
3.
Int J Syst Evol Microbiol ; 70(10): 5497-5502, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897849

RESUMO

A mesophilic, hydrogenotrophic methanogen, strain FWC-SCC2T, was isolated from deep-sea sediments collected by a real-time video multiple-corer at the C5-6 station near a cold seep at Four-Way Closure Ridge region during R/V Ocean Researcher III ORIII-1900 cruise in 2015. The cells were irregular cocci, non-motile and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain FWC-SCC2T were formate or H2+CO2, but not acetate, methanol, ethanol or methylamines. Strain FWC-SCC2T was lysed in SDS (0.01 %, w/v). The M r of surface-layer protein was 116 400. The optimum growth conditions of strain FWC-SCC2T were 37 °C, 0.17 M NaCl and pH 6.7-7.0. The genomic DNA G+C content calculated from the genome sequence of strain FWC-SCC2T was 59.5 mol %. Phylogenetic analysis revealed that strain FWC-SCC2T was a member of the genus Methanofollis, and was most closely related to Methanofollis tationis Chile 9T (97.6 % similarity of 16S rRNA gene sequence) and shared 97.4, 95.9, 95.9 and 95.4 % with Methanofollis liminatans GKZPZT, Methanofollis formosanus ML15T, Methanofollis aquaemaris N2F9704T and Methanofollis ethanolicus HASUT, respectively. The genome relatedness values between strain FWC-SCC2T and M. tationis DSM 2702T were estimated by average nucleotide identity and digital DNA-DNA hybridization analyses and the results were 79.4 and 21.2 %, respectively. Based on the differences in physiological and biochemical properties, 16S rRNA gene phylogeny and genome relatedness presented here, it is suggested that strain FWC-SCC2T represents a novel species of the genus Methanofollis, and the name Methanofollis fontis sp. nov. is proposed. The type strain is FWC-SCC2T (=BCRC AR10052T=DSM 107935T= NBRC 113164T).


Assuntos
Sedimentos Geológicos/microbiologia , Methanomicrobiaceae/classificação , Filogenia , Água do Mar/microbiologia , Composição de Bases , DNA Arqueal/genética , Methanomicrobiaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan
4.
Int J Syst Evol Microbiol ; 70(10): 5586-5593, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32915124

RESUMO

A halotolerant, psychrotolerant and methylotrophic methanogen, strain SY-01T, was isolated from the saline Lake Tus in Siberia. Cells of strain SY-01T were non-motile, cocci and 0.8-1.0 µm in diameter. The only methanogenic substrate utilized by strain SY-01T was methanol. The temperature range of growth for strain SY-01T was from 4 to 40 °C and the optimal temperature for growth was 30 °C. The pH range of growth was from pH 7.2 to 9.0, with optimal growth at pH 8.0. The NaCl range of growth was 0-1.55 M with optimal growth at 0.51 M NaCl. The G+C content of the genome of strain SY-01T was 43.6 mol % as determined by genome sequencing. Phylogenetic analysis revealed that strain SY-01T was most closely related to Methanolobus zinderi SD1T (97.3 % 16S rRNA gene sequence similarity), and had 95.5-97.2 % similarities to other Methanolobus species with valid names. Genome relatedness between strain SY-01T and DSM 21339T was computed using average nucleotide identity and digital DNA-DNAhybridization, which yielded values of 79.7 and 21.7 %, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain SY-01T represents a novel species of the genus Methanolobus, and the name Methanolobus halotolerans sp. nov. is proposed. The type strain is SY-01T (=BCRC AR10051T=NBRC 113166 T=DSM 107642T).


Assuntos
Lagos/microbiologia , Methanosarcinaceae/classificação , Filogenia , Águas Salinas , Composição de Bases , DNA Arqueal/genética , Metano , Methanosarcinaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria
5.
Mar Genomics ; 47: 100673, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30935830

RESUMO

To date, the only methanoarchaea isolated directly from methane hydrate bearing sediments were Methanoculleus submarinus Nankai-1T and Methanoculleus sp. MH98A. Here, we provide the genome of Methanoculleus taiwanensis CYW4T isolated from the deep-sea subseafloor sediment at the Deformation Front offshore southwestern Taiwan, where methane hydrate deposits are likely located. Through comparative genomics analyses of nine Methanoculleus strains from various habitats, 2-3 coding genes for trehalose synthases were found in all nine Methanoculleus genomes, which were not detected in other methanogens and are therefore suggested as a signature of genus Methanoculleus among methane-producing archaea. In addition, the structural genes adjacent to trehalose synthase genes are comprised of the signaling module of Per-Arnt-Sim (PAS) domain-containing proteins, Hsp20 family proteins, arabinose efflux permeases and multiple surface proteins with fasciclin-like (FAS) repeat. This indicates that trehalose synthase gene clusters in Methanoculleus might play roles in the response to various stresses and regulate carbon storage and modification of surface proteins through accumulation of trehalose. The non-gas hydrate-associated Methanoculleus strains harbor carbon-monoxide dehydrogenase (cooS/acsA) genes, which are important for the conversion of acetate to methane at the step of CO oxidation/CO2 reduction in acetoclastic methanogens and further implies that these strains may be able to utilize CO for methanogenesis in their natural habitats. In addition, both genomes of M. bourgensis strains MS2T and MAB1 harbor highly abundant transposase genes, which may be disseminated from microbial communities in their habitats, sewage treatment plants and biogas reactors, which are breeding grounds for antibiotic resistance. Through comparative genomic analyses, we gained insight into understanding the life of strictly anaerobic methane-producing archaea in various habitats, especially in methane-based deep-sea ecosystems.


Assuntos
Genoma Arqueal , Glucosiltransferases/genética , Methanomicrobiaceae/genética , Glucosiltransferases/metabolismo , Methanomicrobiaceae/enzimologia , RNA Arqueal/análise , RNA Ribossômico 16S/análise
6.
Int J Syst Evol Microbiol ; 68(4): 1378-1383, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29509131

RESUMO

A psychrotolerant, methylotrophic methanogen, strain YSF-03T, was isolated from the saline meromictic Lake Shira in Siberia. Cells of strain YSF-03T were non-motile, irregular cocci and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain YSF-03T were methanol and trimethylamine. The temperature range of growth for strain YSF-03T was from 0 to 37 °C. The optimum growth conditions were 30-37 °C, pH 7.0-7.4 and 0.17 M NaCl. The G+C content of the genome of strain YSF-03T was 41.3 mol%. Phylogenetic analysis revealed that strain YSF-03T was most closely related to Methanolobus profundi MobMT (98.15 % similarity in 16S rRNA gene sequence). Genome relatedness between strain YSF-03T and MobMT was computed using the Genome-to-Genome Distance Calculator and average nucleotide identity, which gave values of 23.5 and 79.3 %, respectively. Based on the morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain YSF-03T represents a novel species of the genus Methanolobus, for which the name Methanolobus psychrotolerans sp. nov. is proposed. The type strain is YSF-03T (=BCRC AR10049T=DSM 104044T=NBRC 112514T).


Assuntos
Lagos/microbiologia , Methanosarcinaceae/classificação , Filogenia , Salinidade , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Methanosarcinaceae/genética , Methanosarcinaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria
7.
BMC Microbiol ; 17(1): 123, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545444

RESUMO

BACKGROUND: Phosphorylation of amino acid residues on proteins is an important and common post-translational modification in both eukaryotes and prokaryotes. Most research work has been focused on phosphorylation of serine, threonine or tyrosine residues, whereas phosphorylation of other amino acids are significantly less clear due to the controversy on their stability under standard bioanalytical conditions. RESULTS: Here we applied a shotgun strategy to analyze the histidine and aspartate phosphorylations in different microbes. Our results collectively indicate that histidine and aspartate phosphorylations frequently occur also in proteins that are not part of the two-component systems. Noticeably, a number of the modified proteins are pathogenesis-related or essential for survival in host. These include the zinc ion periplasmic transporter ZnuA in Acinetobacter baumannii SK17, the multidrug and toxic compound extrusion (MATE) channel YeeO in Klebsiella pneumoniae NTUH-K2044, branched amino acid transporter AzlC in Vibrio vulnificus and the RNA-modifying pseudouridine synthase in Helicobacter pylori. CONCLUSIONS: In summary, histidine and aspartate phosphorylation is likely to be ubiquitous and to take place in proteins of various functions. This work also sheds light into how these functionally important proteins and potential drug targets might be regulated at a post-translational level.


Assuntos
Ácido Aspártico/metabolismo , Resistência a Medicamentos , Histidina/metabolismo , Células Procarióticas/metabolismo , Proteômica/métodos , Acinetobacter baumannii/metabolismo , Aminoácidos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Helicobacter pylori/metabolismo , Klebsiella pneumoniae/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Vibrio vulnificus/metabolismo , Zinco/metabolismo
8.
Sci Rep ; 7: 41394, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145490

RESUMO

The core of the Vibrio Harveyi clade contains V. harveyi, V. campbellii, V. owensii, V. jasicida, and V. rotiferianus. They are well recognized aquatic animal pathogens, but misclassification has been common due to similarities in their rDNA sequences and phenotypes. To better understand their evolutionary relationships and functional features, we sequenced a shrimp pathogen strain V. harveyi 1114GL, reclassified it as V. campbellii and compared this and 47 other sequenced Vibrio genomes in the Harveryi clade. A phylogeny based on 1,775 genes revealed that both V. owensii and V. jasicida were closer to V. campbellii than to V. harveyi and that V. campbellii strains can be divided into two distinct groups. Species-specific genes such as intimin and iron acquisition genes were identified in V. campbellii. In particular, the 1114GL strain contains two bacterial immunoglobulin-like genes for cell adhesion with 22 Big_2 domains that have been extensively reshuffled and are by far the most expanded among all species surveyed in this study. The 1114GL strain differed from ATCC BAA-1116 by ~9% at the synonymous sites, indicating high diversity within V. campbellii. Our study revealed the characteristics of V. campbellii in the Harveyi clade and the genetic basis for their wide-spread pathogenicity.


Assuntos
Genoma Bacteriano , Genômica , Filogenia , Vibrio/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Dosagem de Genes , Genes Bacterianos , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genética
9.
Int J Syst Evol Microbiol ; 67(5): 1333-1338, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109205

RESUMO

A pleomorphic, gas-vesicle-containing, halophilic archaeon, designated strain H13T, was isolated from the solar saltern of the Western Salt Co., Chula Vista, California, USA. Cells of strain H13T were non-motile, rod-shaped and 3-10 µm in length. The optimum growth conditions were 3.5-5.0 M NaCl, 45-55 °C, and pH range of 6.5-8.2. The major polar lipids were C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and disulfated diglycosyl diether-1. The G+C content of he genome of strain H13T was calculated as 65.10 mol%. Phylogenetic analysis of 16S rRNA and rpoB' genes revealed that strain H13 was most closely related to Haloterrigena saccharevitans AB14T (16S rRNA gene sequence similarity: 99.51 %; rpoB' sequence similarity: 96.19 %) and Haloterrigena thermotolerans PR5T (99.11 %; 95.50 %). Strain H13T showed low genome relatedness values with Htg. saccharevitans AB14T and Htg. thermotolerans PR5T based on estimated average nucleotide identity (ANI; 92.59 and 91.68 %, respectively) and genome-to-genome distance analysis (GGDA; 47.90 and 45.00 %, respectively). Based on the phenotypic, chemotaxonomic and phylogenetic properties and the genome relatedness, it is evident that strain H13T represents a novel species of the genus Haloterrigena, for which the name Haloterrigena mahiisp. nov. is proposed. The type strain is H13T (=BCRC 910151T=NBRC 111885T).


Assuntos
Halobacteriaceae/classificação , Filogenia , Microbiologia da Água , Composição de Bases , California , DNA Arqueal/genética , Halobacteriaceae/genética , Halobacteriaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA
10.
PLoS One ; 11(12): e0168666, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036340

RESUMO

The halophilic methanoarchaeon Methanohalophilus portucalensis FDF1T possesses the ability to synthesize the osmolyte betaine from its precursor, glycine, in response to extracellular salt stress through a three-step transmethylation process. Analysis of recombinant glycine sarcosine N-methyltransferase (rGSMT) and recombinant sarcosine dimethylglycine N-methyltransferase (rSDMT) from Escherichia coli indicated that betaine synthesis is rate-limited by rGSMT and is constitutively activated by rSDMT. Therefore, it is of interest to purify native GSMT from Methanohalophilus portucalensis to further compare its enzymatic characteristics and kinetics with rGSMT. In this study, native GSMT was purified through DEAE ion exchange and gel filtration chromatography with 95% purity. The enzymatic characteristics of GSMT and rGSMT showed similar trends of activities that were activated by high concentrations of monovalent cations. Both were feedback-inhibited by the end product, betaine, and competitively inhibited by S-adenosylhomocysteine (SAH). Native GSMT was 2-fold more sensitive to SAH than rGSMT. Notably, comparison of the kinetic parameters illustrated that the turnover rate of glycine methylation of GSMT was promoted by potassium ions, whereas rGSMT was activated by increasing protein-glycine binding affinity. These results suggest that GSMT and rGSMT may have different levels of post-translational modifications. Our preliminary mass spectrometry evidence indicated that there was no detectable phosphosite on GSMT after the complicated purification processes, whereas purified rGSMT still possessed 23.1% of its initial phosphorylation level. We believe that a phosphorylation-mediated modification may be involved in the regulation of this energy consuming betaine synthesis pathway during the stress response in halophilic methanoarchaea.


Assuntos
Proteínas Arqueais/metabolismo , Glicina N-Metiltransferase/metabolismo , Glicina/metabolismo , Methanosarcinaceae/metabolismo , Betaína/metabolismo , Escherichia coli/metabolismo , Cinética , Processamento de Proteína Pós-Traducional/fisiologia , S-Adenosil-Homocisteína/metabolismo , Sarcosina/análogos & derivados , Sarcosina/metabolismo
11.
Sci Rep ; 6: 38071, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934872

RESUMO

Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways' end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. Here, we report the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT), which represents the first structural elucidation of the GSMT methyltransferase family. As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. This work implicates a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved.


Assuntos
Glicina N-Metiltransferase/química , Glicina N-Metiltransferase/metabolismo , Methanosarcinaceae/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Retroalimentação Fisiológica , Regulação da Expressão Gênica em Archaea , Regulação Enzimológica da Expressão Gênica , Glicina/metabolismo , Methanosarcinaceae/química , Metilação , Modelos Moleculares , Estrutura Secundária de Proteína , Sarcosina/metabolismo
12.
Sci Rep ; 6: 29013, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357474

RESUMO

Methanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation. A shotgun approach and MS-based analysis identified 149 unique phosphoproteins. Among them, 26% participated in methanogenesis and osmolytes biosynthesis pathways. Of note, we uncovered that protein phosphorylation might be a crucial factor to modulate the pyrrolysine (Pyl) incorporation and Pyl-mediated methylotrophic methanogenesis. Furthermore, heterologous expression of glycine sarcosine N-methyltransferase (GSMT) mutant derivatives in the osmosensitive Escherichia coli MKH13 revealed that the nonphosphorylated T68A mutant resulted in increased salt tolerance. In contrast, mimic phosphorylated mutant T68D proved defective in both enzymatic activity and salinity tolerance for growth. Our study provides new insights into phosphorylation modification as a crucial role of both methanogenesis and osmoadaptation in methanoarchaea, promoting biogas production or reducing future methane emission in response to global warming and climate change.


Assuntos
Proteínas Arqueais/metabolismo , Metano/biossíntese , Methanosarcinaceae/fisiologia , Osmorregulação/fisiologia , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Betaína/metabolismo , Aquecimento Global , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Methanosarcinaceae/genética , Metilação , Modelos Moleculares , Mutação de Sentido Incorreto , Fosforilação , Mutação Puntual , Conformação Proteica , Proteômica , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Espectrometria de Massas em Tandem
13.
Genome Announc ; 4(2)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27103730

RESUMO

Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat.

14.
Sci Rep ; 5: 16326, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541644

RESUMO

The aim of this study was to classify certain environmental haloarchaea and methanoarchaea using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to expand the archaeal mass spectral database. A total of 69 archaea were collected including type strains and samples isolated locally from different environments. For extraction of the haloarchaeal total cell peptides/proteins, a simple method of acetonitrile extraction was developed. Cluster analysis conducted with the MALDI-TOF MS data overcame the high divergence in intragenomic 16S rRNA sequences in haloarchaea and clearly distinguished Methanohalophilus mahii from M. portucalensis. Putative biomarkers that can distinguish several particular archaeal genera were also assigned. In conclusion, this study expands the mass spectral database of peptide/protein fingerprints from bacteria and fungi to the archaea domain and provides a rapid identification platform for environmental archaeal samples.


Assuntos
Archaea/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
15.
Sci Rep ; 5: 10100, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25960001

RESUMO

Streptosporangium sibiricum SibL catalyzes the methyl transfer from S-adenosylmethionine (SAM) to 3-hydroxykynurenine (3-HK) to produce S-adenosylhomocysteine (SAH) and 3-hydroxy-4-methyl-kynurenine for sibiromycin biosynthesis. Here, we present the crystal structures of apo-form Ss-SibL, Ss-SibL/SAH binary complex and Ss-SibL/SAH/3-HK ternary complex. Ss-SibL is a homodimer. Each subunit comprises a helical N-terminal domain and a Rossmann-fold C-terminal domain. SAM (or SAH) binding alone results in domain movements, suggesting a two-step catalytic cycle. Analyses of the enzyme-ligand interactions and further mutant studies support a mechanism in which Tyr134 serves as the principal base in the transferase reaction of methyl group from SAM to 3-HK.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinurenina/análogos & derivados , Metiltransferases/química , Metiltransferases/metabolismo , Actinobacteria/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Cinurenina/metabolismo , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína
16.
Int J Syst Evol Microbiol ; 65(7): 2141-2147, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25855623

RESUMO

A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 µm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Methanomicrobiaceae/classificação , Filogenia , Composição de Bases , DNA Arqueal/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan
17.
Int J Syst Evol Microbiol ; 65(Pt 3): 1044-1049, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575827

RESUMO

A mesophilic, hydrogenotrophic methanogen, strain CYW4(T), was isolated from deep-sea sediment obtained by the Ocean Researcher I cruiser, ORI-961, in 2011. The sediment was from the deformation front area offshore of south-western Taiwan. Here, seismic reflections indicated that methane hydrates were abundant. The methanogenic substrates utilized by strain CYW4(T) were formate and H2/CO2, but not acetate, secondary alcohols, methylamines, methanol and ethanol. Cells of strain CYW4(T) were non-motile, irregular cocci and 0.6-1.5 µm in diameter. The S-layer protein had an Mr of 112 000. The optimum growth conditions were at 37 °C, pH 8.1 and 0.08 M NaCl. Growth of the strain was stimulated by acetate. The G+C content of the chromosomal DNA of strain CYW4(T) was 61 mol%. Phylogenetic analysis revealed that strain CYW4(T) was most closely related to Methanoculleus marisnigri JR1(T) (96.82 % 16S rRNA gene sequence similarity). Based on the morphological, phenotypic and phylogenetic characteristics presented here, it is evident that strain CYW4(T) represents a novel species of the genus Methanoculleus, and the name Methanoculleus taiwanensis sp. nov. is proposed. The type strain is CYW4(T) ( = BCRC AR10043(T) = NBRC 110782(T)). The optical density of cultures of strain CYW4(T) dropped abruptly upon entering the stationary growth phase. During this time numerous particles of approximately 50 nm in diameter were observed on and around the cells. This suggests that strain CYW4(T) harbours a lytic virus that is induced in the stationary phase, which is of interest because only a few lytic viruses have been reported in methanogens.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Methanomicrobiaceae/classificação , Filogenia , Composição de Bases , DNA Arqueal/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Taiwan
18.
J Microbiol Immunol Infect ; 48(5): 510-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24767417

RESUMO

BACKGROUND/PURPOSE: Streptococcus agalactiae (GBS), is the most common pathogen causing infections among perinatal women and neonatal babies. Nonetheless, there are few studies on the occurrence of GBS among the pregnant women and the mechanisms of GBS resistance to quinolones and macrolides in Taiwan. METHODS: GBS were isolated from vaginas of the pregnant and non-pregnant symptomatic women in Taiwan. The prevalence, antimicrobial susceptibility, and mechanisms of resistance against erythromycin and quinolone of total 188 isolates were studied. RESULTS: The isolation rate of GBS from pregnant women was significantly higher at 21.8% compare with the non-pregnant women of 13.2%. Antibiotic susceptibility test of the 188 GBS isolates revealed a high non-susceptible rate for erythromycin (50.0%) while the rate for levofloxacin was only 4.8%. Among 94 erythromycin non-susceptible GBS isolates, ermB gene was detected 83.1% (59/71) for those GBS that were non-susceptible to both clindamycin and tetracycline, which was significantly higher than GBS that are susceptible to clindamycin but resistant to tetracycline at 43.8% (7/16). No ermA or mef gene was detected in any isolate. Mutations were detected in the parC and gyrA genes in 14 out of 18 levofloxacin non-susceptible isolates. The predominant mutation type was the combination of Ser79Tyr in parC and Ser81Leu mutations in gyrA. CONCLUSION: GBS is the most common isolated pathogens in vaginal infections in Taiwan, resistance to tetracycline and erythromycin is higher than the rate observed for other regions of the world, while the resistance rate for levofloxacin was relatively lower in Taiwan.


Assuntos
Antibacterianos/farmacologia , Macrolídeos/farmacologia , Complicações Infecciosas na Gravidez/epidemiologia , Quinolonas/farmacologia , Infecções Estreptocócicas/epidemiologia , Streptococcus agalactiae/efeitos dos fármacos , Vaginite/microbiologia , Farmacorresistência Bacteriana , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Prevalência , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/isolamento & purificação , Taiwan/epidemiologia
19.
Plant Mol Biol ; 85(4-5): 429-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24803410

RESUMO

Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.


Assuntos
Arabidopsis/metabolismo , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Methanosarcinaceae/enzimologia , Arabidopsis/genética , Proteínas Arqueais/genética , Methanosarcinaceae/genética , Plantas Geneticamente Modificadas , Tolerância ao Sal , Cloreto de Sódio , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Água/metabolismo
20.
J Microbiol Immunol Infect ; 46(1): 1-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22578640

RESUMO

BACKGROUND: ß-amino acids play important biological roles as precursors in the biosynthesis of antibiotics, anticancer agents, neurotransmitters, and other high molecular weight polymers. Microbial cells and enzymes from extreme environments offer new opportunities for biocatalysis and biotransformations as a result of their extreme stability. Lysine 2,3-aminomutase catalyzes the interconversion of L-α-lysine and L-ß-lysine. L-ß-lysine is a precursor in the bacterial biosynthesis of several antibiotics, and also is a precursor in the biosynthesis of osmolyte N(ε)-acetyl-ß-lysine for salt stress and adaptation in methanoarchaea. METHODS: Lysine 2,3-aminomutase (AblA) genes from the marine Methanosarcina mazei N2M9705, halotolerant Methanocalculus chunghsingensis K1F9705b(T), and halophilic Methanohalophilus portucalensis FDF1(T) were cloned by PCR and southern hybridization. Both nucleotide and amino acid sequences of AblAs were analyzed and phylogenetic comparisons performed. Additionally, the functional motifs and 3D structure of aminomutases were aligned and compared. RESULTS: The deduced amino acid sequences of AblAs from methanoarchaea share high identity with the known clostridial and Bacillus lysine 2,3-aminomutase. The conserved amino acid residues for cofactors, such as the iron-sulfur cluster, S-adenosylmethionine (SAM), pyridoxal 5'-phosphate (PLP) and zinc-binding sites in methanoarchaeal AblAs suggested that they were lysine 2,3-aminomutases. CONCLUSION: AblAs from methanoarchaea are lysine 2,3-aminomutases that may function as potential biocatalysts for the synthesis of ß-lysine in vivo and in vitro.


Assuntos
Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Lisina/análogos & derivados , Methanomicrobiales/enzimologia , Filogenia , Motivos de Aminoácidos , Clonagem Molecular , Análise por Conglomerados , Transferases Intramoleculares/química , Lisina/metabolismo , Methanomicrobiales/genética , Dados de Sequência Molecular , Conformação Proteica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA