Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Antiviral Res ; 227: 105920, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821317

RESUMO

COVID-19 pandemic is predominantly caused by SARS-CoV-2, with its main protease, Mpro, playing a pivotal role in viral replication and serving as a potential target for inhibiting different variants. In this study, potent Mpro inhibitors were identified from glycyrrhizic acid (GL) derivatives with amino acid methyl/ethyl esters. Out of the 17 derivatives semisynthesized, Compounds 2, 6, 9, and 15, with methionine methyl esters, D-tyrosine methyl esters, glutamic acid methyl esters, and methionines in the carbohydrate moiety, respectively, significantly inhibited wild-type SARS-CoV-2 Mpro-mediated proteolysis, with IC50 values ranging from 0.06 µM to 0.84 µM. They also demonstrated efficacy in inhibiting trans-cleavage by mutant Mpro variants (Mpro_P132H, Mpro_E166V, Mpro_P168A, Mpro_Q189I), with IC50 values ranging from 0.05 to 0.92 µM, surpassing nirmatrelvir (IC50: 1.17-152.9 µM). Molecular modeling revealed stronger interactions with Valine166 in the structural complex of Mpro_E166V with the compounds compared to nirmatrelvir. Moreover, these compounds efficiently inhibited the post-entry viral processes of wild-type SARS-CoV-2 single-round infectious particles (SRIPs), mitigating viral cytopathic effects and reducing replicon-driven GFP reporter signals, as well as in vitro infectivity of wild-type, Mpro_E166V, and Mpro_Q189I SRIPs, with EC50 values ranging from 0.02 to 0.53 µM. However, nirmatrelvir showed a significant decrease in inhibiting the replication of mutant SARS-CoV-2 SRIPs carrying Mpro_E166V (EC50: >20 µM) and Mpro_Q189I (EC50: 13.2 µM) compared to wild-type SRIPs (EC50: 0.06 µM). Overall, this study identifies four GL derivatives as promising lead compounds for developing treatments against various SARS-CoV-2 strains, including Omicron, and nirmatrelvir-resistant variants.

2.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069363

RESUMO

The continuous emergence of SARS-CoV-2 variants has led to a protracted global COVID-19 pandemic with significant impacts on public health and global economy. While there are currently available SARS-CoV-2 vaccines and therapeutics, most of the FDA-approved antiviral agents directly target viral proteins. However, inflammation is the initial immune pathogenesis induced by SARS-CoV-2 infection, there is still a need to find additional agents that can control the virus in the early stages of infection to alleviate disease progression for the next pandemic. Here, we find that both the spike protein and its receptor CD147 are crucial for inducing inflammation by SARS-CoV-2 in THP-1 monocytic cells. Moreover, we find that 3-epi-betulin, isolated from Daphniphyllum glaucescens, reduces the level of proinflammatory cytokines induced by SARS-CoV-2, consequently resulting in a decreased viral RNA accumulation and plaque formation. In addition, 3-epi-betulin displays a broad-spectrum inhibition of entry of SARS-CoV-2 pseudoviruses, including Alpha (B.1.1.7), Eplison (B.1.429), Gamma (P1), Delta (B.1.617.2) and Omicron (BA.1). Moreover, 3-epi-betulin potently inhibits SARS-CoV-2 infection with an EC50 of <20 µM in Calu-3 lung epithelial cells. Bioinformatic analysis reveals the chemical interaction between the 3-epi-betulin and the spike protein, along with the critical amino acid residues in the spike protein that contribute to the inhibitory activity of 3-epi-betulin against virus entry. Taken together, our results suggest that 3-epi-betulin exhibits dual effect: it reduces SARS-CoV-2-induced inflammation and inhibits virus entry, positioning it as a potential antiviral agent against SARS-CoV-2.


Assuntos
COVID-19 , Daphniphyllum , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Antivirais/farmacologia , Inflamação/tratamento farmacológico
3.
Antiviral Res ; 220: 105744, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944823

RESUMO

Working with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is restricted to biosafety level III (BSL-3) laboratory. The study used a trans-complementation system consisting of virus-like particles (VLPs) and DNA-launched replicons to generate SARS-CoV-2 single-round infectious particles (SRIPs) with variant-specific spike (S) proteins. S gene of Wuhan-Hu-1 strain (SWH1) or Omicron BA.1 variant (SBA.1), along with the envelope (E) and membrane (M) genes, were cloned into a tricistronic vector, co-expressed in the cells to produce variant-specific S-VLPs. Additionally, the replicon of the WH1-like strain without S, E, M and accessory genes, was engineered under the control by a CMV promoter to produce self-replicating RNAs within VLP-producing cells, led to create SWH1- and SBA.1-based SARS-CoV-2 SRIPs. The SBA.1-based SRIP showed lower virus yield, replication, N protein expression, fusogenicity, and infectivity compared to SWH1-based SRIPs. SBA.1-based SRIP also exhibited intermediate resistance to neutralizing antibodies produced by SWH1-based vaccines, but were effective at infecting cells with low ACE2 expression. Importantly, both S-based SRIPs responded similarly to remdesivir and GC376, with EC50 values ranging from 0.17 to 1.46 µM, respectively. The study demonstrated that this trans-complementation system is a reliable and efficient tool for generating SARS-CoV-2 SRIPs with variant-specific S proteins. SARS-CoV-2 SRIPs, mimicking authentic live viruses, facilitate comprehensive analysis of variant-specific virological characteristics, including antibody neutralization, and drug sensitivity in non-BSL-3 laboratories.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Microbiol Spectr ; : e0385422, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713503

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.

5.
J Biomed Sci ; 30(1): 14, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823664

RESUMO

BACKGROUND: Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the ß-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS: We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS: Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION: We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Proteínas Virais/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulação para Cima , Influenza Humana/genética , RNA Viral/metabolismo , Vírus da Influenza A/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética
6.
Mol Ther Oncolytics ; 28: 104-117, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699618

RESUMO

Glioblastoma (GBM) is the most common aggressive malignant brain cancer and is chemo- and radioresistant, with poor therapeutic outcomes. The "double-edged sword" of virus-induced cell death could be a potential solution if the oncolytic virus specifically kills cancer cells but spares normal ones. Zika virus (ZIKV) has been defined as a prospective oncolytic virus by selectively targeting GBM cells, but unclear understanding of how ZIKV kills GBM and the consequences hinders its application. Here, we found that the cellular gasdermin D (GSDMD) is required for the efficient death of a human GBM cell line caused by ZIKV infection. The ZIKV protease specifically cleaves human GSDMD to activate caspase-independent pyroptosis, harming both viral protease-harboring and naive neighboring cells. Analyzing human GSDMD variants showed that most people were susceptible to ZIKV-induced cytotoxicity, except for those with variants that resisted ZIKV cleavage or were defective in oligomerizing the N terminus GSDMD cleavage product. Consistently, ZIKV-induced secretion of the pro-inflammatory cytokine interleukin-1ß and cytolytic activity were both stopped by a small-molecule inhibitor targeting GSDMD oligomerization. Thus, potential ZIKV oncolytic therapy for GBM would depend on the patient's GSDMD genetic background and could be abolished by GSDMD inhibitors if required.

7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445789

RESUMO

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Assuntos
Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Proteínas da Matriz Viral/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Linhagem Celular , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/imunologia , Proteínas do Envelope de Coronavírus/ultraestrutura , Cricetinae , Humanos , Microscopia Eletrônica de Transmissão , Mutação , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/ultraestrutura , Vírion/genética , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura
8.
Eur J Clin Microbiol Infect Dis ; 40(1): 141-149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32814996

RESUMO

Emerging evidence highlights the role of non-coding small RNAs in host-influenza interaction. We have identified a Y RNA-derived small RNA, miR-1975, which is upregulated upon influenza A virus infection in A549 cells. The aim of this study is to investigate whether miR-1975 serves as an indicator of clinical severity upon influenza infection. We investigate the abundance of miR-1975 in sera from clinical patients and its correlation with hypoxemia status. We quantified its amounts in sera from influenza virus-infected patients and healthy volunteers by means of stem-loop RT-PCR. Median values of miR-1975 were significantly higher in influenza virus-infected patients, especially in hypoxemic patients. miR-1975 levels at the acute stage of the disease were highly correlated with the fraction of inspired oxygen used by the patients and total ventilator days. Receiver operator characteristic curve analysis revealed that miR-1975 levels in combination with days of fever before presenting to hospital had significant predictive value for hypoxemia and respiratory failure for patients infected with influenza virus. Our results reveal that circulating miR-1975 has great potential to serve as a biomarker for predicting prognosis in patients infected with influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Adulto , Feminino , Humanos , Influenza Humana/sangue , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
9.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33208444

RESUMO

MicroRNA let-7b expression is induced by infection of hepatitis C virus (HCV) and is involved in the regulation of HCV replication by directly targeting the HCV genome. The current study demonstrated that let-7b directly targets negative regulators of type I interferon (IFN) signaling thereby limiting HCV replication in the early stage of HCV infection. Let-7b-regulated genes which are involved in host cellular responses to HCV infection were unveiled by microarray profiling and bioinformatic analyses, followed by various molecular and cellular assays using Huh7 cells expressing wild-type (WT) or the seed region-mutated let-7b. Let-7b targeted the cytokine signaling 1 (SOCS1) protein, a negative regulator of JAK/STAT signaling, which then enhanced STAT1-Y701 phosphorylation leading to increased expression of the downstream interferon-stimulated genes (ISGs). Let-7b augmented retinoic acid-inducible gene I (RIG-I) signaling, but not MDA5, to phosphorylate and nuclear translocate IRF3 leading to increased expression of IFN-ß. Let-7b directly targeted the ATG12 and IκB kinase alpha (IKKα) transcripts and reduced the interaction of the ATG5-ATG12 conjugate and RIG-I leading to increased expression of IFN, which may further stimulate JAK/STAT signaling. Let-7b induced by HCV infection elicits dual effects on IFN expression and signaling, along with targeting the coding sequences of NS5B and 5' UTR of the HCV genome, and limits HCV RNA accumulation in the early stage of HCV infection. Controlling let-7b expression is thereby crucial in the intervention of HCV infection.IMPORTANCE HCV is a leading cause of liver disease, with an estimated 71 million people infected worldwide. During HCV infection, type I interferon (IFN) signaling displays potent antiviral and immunomodulatory effects. Host factors, including microRNAs (miRNAs), play a role in upregulating IFN signaling to limit HCV replication. Let-7b is a liver-abundant miRNA that is induced by HCV infection and targets the HCV genome to suppress HCV RNA accumulation. In this study, we demonstrated that let-7b, as a positive regulator of type I IFN signaling, plays dual roles against HCV replication by increasing the expression of IFN and interferon-sensitive response element (ISRE)-driven interferon-stimulated genes (ISGs) in the early stage of HCV infection. This study sheds new insight into understanding the role of let-7b in combatting HCV infection. Clarifying IFN signaling regulated by miRNA during the early phase of HCV infection may help researchers understand the initial defense mechanisms to other RNA viruses.


Assuntos
Hepatite C/imunologia , Interferon Tipo I/metabolismo , MicroRNAs/fisiologia , RNA Viral/metabolismo , Replicação Viral , Regiões 5' não Traduzidas , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas não Estruturais Virais/genética
10.
Proc Natl Acad Sci U S A ; 117(27): 15947-15954, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576686

RESUMO

The cytosolic DNA sensor cGMP-AMP synthase (cGAS) synthesizes the noncanonical cyclic dinucleotide 2'3'-cGAMP to activate the adaptor protein stimulator of IFN genes (STING), thus awakening host immunity in response to DNA pathogen infection. However, dengue virus (DENV), an RNA virus without a DNA stage in its life cycle, also manipulates cGAS-STING-mediated innate immunity by proteolytic degradation of STING. Here, we found that the sensitivity of STING to DENV protease varied with different human STING haplotypes. Exogenous DNA further enhanced DENV protease's ability to interact and cleave protease-sensitive STING. DNA-enhanced STING cleavage was reduced in cGAS-knockdown cells and triggered by the cGAS product 2'3'-cGAMP. The source of DNA may not be endogenous mitochondrial DNA but rather exogenous reactivated viral DNA. Cells producing 2'3'-cGAMP by overexpressing cGAS or with DNA virus reactivation enhanced STING cleavage in neighboring cells harboring DENV protease. DENV infection reduced host innate immunity in cells with the protease-sensitive STING haplotype, whose homozygote genotype frequency was found significantly reduced in Taiwanese people with dengue fever. Therefore, the human STING genetic background and DNA pathogen coinfection may be the missing links contributing to DENV pathogenesis.


Assuntos
Dengue/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células A549 , DNA Viral/genética , Dengue/imunologia , Endopeptidases/genética , Haplótipos , Humanos , Evasão da Resposta Imune , Imunidade Inata , Nucleotídeos Cíclicos/genética
12.
J Biomed Sci ; 26(1): 58, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416454

RESUMO

BACKGROUND: Multiple interplays between viral and host factors are involved in influenza virus replication and pathogenesis. Several small RNAs have recently emerged as important regulators of host response to viral infections. The aim of this study was to characterize the functional role of hsa-miR-1975, a Y5 RNA-derived small RNA, in defending influenza virus and delineate the mechanisms. METHODS: We performed high throughput sequencing of small RNAs in influenza virus-infected cells to identify up- or down- regulated small RNA species. The expression of the most abundant RNA species (hsa-miR-1975) was validated by stem-loop reverse transcription-polymerase chain reaction (RT-PCR). Antiviral effects of hsa-miR-1975 were confirmed by Western Blot, RT-PCR and plaque assay. In vitro perturbation of hsa-miR-1975 combined with exosomes isolation was used to elucidate the role and mechanism of hsa-miR-1975 in the context of antiviral immunity. RESULTS: Small RNA sequencing revealed that hsa-miR-1975 was the most up-regulated small RNA in influenza virus-infected cells. The amount of intracellular hsa-miR-1975 increased in the late stage of the influenza virus replication cycle. The increased hsa-miR-1975 was at least partially derived from degradation of Y5RNA as a result of cellular apoptosis. Unexpectedly, hsa-miR-1975 mimics inhibited influenza virus replication while hsa-miR-1975 sponges enhanced the virus replication. Moreover, hsa-miR-1975 was secreted in exosomes and taken up by the neighboring cells to induce interferon expression. CONCLUSIONS: Our findings unravel a critical role of Y-class small RNA in host's defense against influenza virus infection and reveal its antiviral mechanism through exosome delivery. This may provide a new candidate for targeting influenza virus.


Assuntos
Exossomos/fisiologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , MicroRNAs/fisiologia , Replicação Viral , Células A549 , Animais , Cães , Humanos , Células Madin Darby de Rim Canino , MicroRNAs/genética
13.
Front Immunol ; 9: 2860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564245

RESUMO

In the battle between a virus and its host, innate immunity serves as the first line of defense protecting the host against pathogens. The antiviral actions start with the recognition of pathogen-associated molecular patterns derived from the virus, then ultimately turning on particular transcription factors to generate antiviral interferons (IFNs) or proinflammatory cytokines via fine-tuned signaling cascades. With dengue virus (DENV) infection, its viral RNA is recognized by the host RNA sensors, mainly retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and toll-like receptors. DENV infection also activates the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)-mediated DNA-sensing pathway despite the absence of a DNA stage in the DENV lifecycle. In the last decade, DENV has been considered a weak IFN-inducing pathogen with the evidence that DENV has evolved multiple strategies antagonizing the host IFN system. DENV passively escapes from innate immunity surveillance and also actively subverts the innate immune system at multiple steps. DENV targets both RNA-triggered RLR-mitochondrial antiviral signaling protein (RLR-MAVS) and DNA-triggered cGAS-STING signaling to reduce IFN production in infected cells. It also blocks IFN action by inhibiting IFN regulatory factor- and signal transducer and activator of transcription-mediated signaling. This review explores the current understanding of how DENV escapes the control of the innate immune system by modifying viral RNA and viral protein and by post-translational modification of cellular factors. The roles of the DNA-sensing pathway in DENV infection, and how mitochondrial dynamics participates in innate immunity are also discussed.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Imunidade Inata , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dengue/virologia , Vírus da Dengue/genética , Humanos , Interferons/imunologia , Interferons/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
14.
Methods Mol Biol ; 1836: 185-194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151574

RESUMO

Although several virus families are internalized into their host cells by direct fusion of the viral envelope with the plasma membrane, most viruses, for example, influenza virus, make use of endocytic pathways for productive entry and infection. After endocytosis, the influenza virus escapes from the endocytic compartment to the cytosol. The distribution of the incoming influenza virus could be traced by detection of the viral RNA in the distinct cellular compartments, including endosome, cytosol, and nucleus. To accomplish this work, we developed a subcellular fractionation method based on density gradient ultracentrifugation and detected the viral RNA using quantitative reverse transcription-polymerase chain reaction analysis. This chapter is devoted to the practical methods and precautions for studying endocytic traffic of virus as well as host cellular factors affecting viral endocytosis.


Assuntos
Endocitose , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Animais , Fracionamento Celular/métodos , Linhagem Celular Tumoral , Humanos
15.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167343

RESUMO

Virus replication is mediated by interactions between the virus and host. Here, we demonstrate that influenza A virus membrane protein 2 (M2) can be ubiquitinated. The lysine residue at position 78, which is located in the cytoplasmic domain of M2, is essential for M2 ubiquitination. An M2-K78R (Lys78→Arg78) mutant, which produces ubiquitination-deficient M2, showed a severe defect in the production of infectious virus particles. M2-K78R mutant progeny contained more hemagglutinin (HA) proteins, less viral RNAs, and less internal viral proteins, including M1 and NP, than the wild-type virus. Furthermore, most of the M2-K78R mutant viral particles lacked viral ribonucleoproteins upon examination by electron microscopy and exhibited slightly lower densities. We also found that mutant M2 colocalized with the M1 protein to a lesser extent than for the wild-type virus. These findings may account for the reduced incorporation of viral ribonucleoprotein into virions. By blocking the second round of virus infection, we showed that the M2 ubiquitination-defective mutant exhibited normal levels of virus replication during the first round of infection, thereby proving that M2 ubiquitination is involved in the virus production step. Finally, we found that the M2-K78R mutant virus induced autophagy and apoptosis earlier than did the wild-type virus. Collectively, these results suggest that M2 ubiquitination plays an important role in infectious virus production by coordinating the efficient packaging of the viral genome into virus particles and the timing of virus-induced cell death.IMPORTANCE Annual epidemics and recurring pandemics of influenza viruses represent very high global health and economic burdens. The influenza virus M2 protein has been extensively studied for its important roles in virus replication, particularly in virus entry and release. Rimantadine, one of the most commonly used antiviral drugs, binds to the channel lumen near the N terminus of M2 proteins. However, viruses that are resistant to rimantadine have emerged. M2 undergoes several posttranslational modifications, such as phosphorylation and palmitoylation. Here, we reveal that ubiquitination mediates the functional role of M2. A ubiquitination-deficient M2 mutant predominately produced virus particles either lacking viral ribonucleoproteins or containing smaller amounts of internal viral components, resulting in lower infectivity. Our findings offer insights into the mechanism of influenza virus morphogenesis, particularly the functional role of M1-M2 interactions in viral particle assembly, and can be applied to the development of new influenza therapies.


Assuntos
Vírus da Influenza A/genética , Ubiquitinação , Proteínas da Matriz Viral/química , Células A549 , Animais , Apoptose , Cães , Genoma Viral , Células HEK293 , Humanos , Vírus da Influenza A/patogenicidade , Células Madin Darby de Rim Canino , Microscopia Eletrônica , Proteínas da Matriz Viral/genética , Vírion/genética , Vírion/patogenicidade , Montagem de Vírus
16.
PLoS Pathog ; 13(9): e1006609, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28931085

RESUMO

Hepatitis C virus (HCV) induces autophagy to promote its replication, including its RNA replication, which can take place on double-membrane vesicles known as autophagosomes. However, how HCV induces the biogenesis of autophagosomes and how HCV RNA replication complex may be assembled on autophagosomes were largely unknown. During autophagy, crescent membrane structures known as phagophores first appear in the cytoplasm, which then progress to become autophagosomes. By conducting electron microscopy and in vitro membrane fusion assay, we found that phagophores induced by HCV underwent homotypic fusion to generate autophagosomes in a process dependent on the SNARE protein syntaxin 7 (STX7). Further analyses by live-cell imaging and fluorescence microscopy indicated that HCV-induced phagophores originated from the endoplasmic reticulum (ER). Interestingly, comparing with autophagy induced by nutrient starvation, the progression of phagophores to autophagosomes induced by HCV took significantly longer time, indicating fundamental differences in the biogenesis of autophagosomes induced by these two different stimuli. As the knockdown of STX7 to inhibit the formation of autophagosomes did not affect HCV RNA replication, and purified phagophores could mediate HCV RNA replication, the assembly of the HCV RNA replication complex on autophagosomes apparently took place during the formative stage of phagophores. These findings provided important information for understanding how HCV controlled and modified this important cellular pathway for its own replication.


Assuntos
Autofagossomos/virologia , Autofagia/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , RNA Viral/biossíntese , Replicação Viral/fisiologia , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão
17.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768860

RESUMO

Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target.IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica , Zinco/metabolismo , Células A549 , Antivirais/farmacologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Dissulfiram/farmacologia , Células HEK293 , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/fisiologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Ligação Proteica , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteína SUMO-1/metabolismo , Replicação Viral/efeitos dos fármacos
18.
Hepatology ; 66(6): 1719-1721, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28749534
19.
mBio ; 8(3)2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536288

RESUMO

Influenza A virus (IAV) RNA segments are individually packaged with viral nucleoprotein (NP) and RNA polymerases to form a viral ribonucleoprotein (vRNP) complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4), which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication.IMPORTANCE Influenza virus, particularly influenza A virus, causes severe and frequent outbreaks among human and avian species. Finding potential target sites for antiviral agents is of utmost importance from the public health point of view. We previously found that viral nucleoprotein (NP) is ubiquitinated, and ubiquitination enhances viral RNA replication. In this study, we found a cellular ubiquitin ligase, CNOT4, capable of ubiquitinating NP. The ubiquitination sites are scattered on the surface of the NP molecule, which is critical for RNA replication. CNOT4 and a ubiquitin protease, USP11, together regulate the extent of NP ubiquitination and thereby the efficiency of RNA replication. This study thus identifies a potential antiviral target site and reveals a novel posttranslational mechanism for regulating viral replication. This represents a novel finding in the literature of influenza virus research.


Assuntos
Interações Hospedeiro-Patógeno , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Proteínas do Core Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cães , Humanos , Espectrometria de Massas , Proteínas do Nucleocapsídeo , Mapeamento de Interação de Proteínas , Tioléster Hidrolases/metabolismo
20.
Nat Commun ; 8: 13882, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067225

RESUMO

B-cell infection by hepatitis C virus (HCV) has been a controversial topic. To examine whether HCV has a genetically determined lymphotropism through a co-receptor specific for the infection by lymphotropic HCV, we established an infectious clone and chimeric virus of hepatotropic and lymphotropic HCV strains derived from an HCV-positive B-cell lymphoma. The viral envelope and 5'-UTR sequences of the lymphotropic HCV strain were responsible for the lymphotropism. Silencing of the virus sensor, RIGI, or overexpression of microRNA-122 promoted persistent viral replication in B cells. By cDNA library screening, we identified an immune cell-specific, co-stimulatory receptor B7.2 (CD86) as a co-receptor of lymphotropic HCV. Infection of B cells by HCV inhibited the recall reaction to antigen stimulation. Together, a co-receptor B7.2 enabled lymphotropic HCV to infect memory B cells, leading to inhibition of memory B-cell function and persistent HCV infection in HCV-infected hosts.


Assuntos
Linfócitos B/virologia , Antígeno B7-2/genética , Hepacivirus/imunologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/genética , Tropismo Viral/imunologia , Linfócitos B/imunologia , Antígeno B7-2/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/antagonistas & inibidores , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Células Hep G2 , Humanos , Memória Imunológica , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/imunologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos , Transdução de Sinais , Proteínas do Envelope Viral/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA