Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Theranostics ; 14(7): 2706-2718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773966

RESUMO

Background: Neurotropic virus infections actively manipulate host cell metabolism to enhance virus neurovirulence. Although hyperglycemia is common during severe infections, its specific role remains unclear. This study investigates the impact of hyperglycemia on the neurovirulence of enterovirus 71 (EV71), a neurovirulent virus relying on internal ribosome entry site (IRES)-mediated translation for replication. Methods: Utilizing hSCARB2-transgenic mice, we explore the effects of hyperglycemia in EV71 infection and elucidate the underlying mechanisms. Results: Remarkably, administering insulin alone to reduce hyperglycemia in hSCARB2-transgenic mice results in a decrease in brainstem encephalitis and viral load. Conversely, induced hyperglycemia exacerbates neuropathogenesis, highlighting the pivotal role of hyperglycemia in neurovirulence. Notably, miR-206 emerges as a crucial mediator induced by viral infection, with its expression further heightened by hyperglycemia and concurrently repressed by insulin. The use of antagomiR-206 effectively mitigates EV71-induced brainstem encephalitis and reduces viral load. Mechanistically, miR-206 facilitates IRES-driven virus replication by repressing the stress granule protein G3BP2. Conclusions: Novel therapeutic approaches against severe EV71 infections involve managing hyperglycemia and targeting the miR-206-stress granule pathway to modulate virus IRES activity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Hiperglicemia , Sítios Internos de Entrada Ribossomal , Camundongos Transgênicos , MicroRNAs , Replicação Viral , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Hiperglicemia/metabolismo , Hiperglicemia/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Humanos , Carga Viral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Insulina/metabolismo , Modelos Animais de Doenças
2.
Aging Cell ; 21(8): e13670, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822270

RESUMO

Vitamin D deficiency has been epidemiologically linked to Alzheimer's disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non-genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D-sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aß deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non-genomic VDR/p53 complex in AD brains. Consistently, our population-based longitudinal study also showed that dementia-free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre-existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/metabolismo , Animais , Estudos de Coortes , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Camundongos , Proteína Supressora de Tumor p53 , Vitamina D/farmacologia
3.
Cell Death Dis ; 13(4): 328, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35399111

RESUMO

Brainstem encephalitis, a manifestation of severe enterovirus 71 (EV71) infection, is an acute excessive inflammatory response. The mechanisms underlying its development remain poorly understood. Usually neurotropic viruses trigger acute host immune response by engaging cell surface or intracellular receptors. Here, we show that EV71 engagement with intracellular receptor TLR9 elicits IL-12p40-iNOS signaling causing encephalitis in mice. We identified IL-12p40 to be the only prominent cytokine-induced at the early infection stage in the brainstem of mice subjected to a lethal dose of EV71. The upregulated IL-12p40 proteins were expressed in glial cells but not neuronal cells. To better understand the role of IL-12p40 in severe EV71 infection, we treated the EV71-infected mice with an antibody against IL-12p40 and found the mortality rate, brainstem inflammation, and gliosis to be markedly reduced, suggesting that the acute IL-12p40 response plays a critical role in the pathogenesis of brainstem encephalitis. Mechanistically, intracellular TLR9 was found essential to the activation of the IL-12p40 response. Blocking TLR9 signaling with CpG-ODN antagonist ameliorated IL-12p40 response, brainstem inflammation, and limb paralysis in mice with EV71-induced encephalitis. We further found the glial IL-12p40 response might damage neurons by inducing excess production of neurotoxic NO by iNOS. Overall, EV71 engagement with intracellular TLR9 was found to elicit a neurotoxic glial response via IL12p40-iNOS signaling contributing to the neurological manifestation of EV71 infection. This pathway could potentially be targeted for the treatment of brainstem encephalitis.


Assuntos
Encefalite , Enterovirus Humano A , Infecções por Enterovirus , Subunidade p40 da Interleucina-12 , Receptor Toll-Like 9 , Animais , Encefalite/imunologia , Encefalite/virologia , Infecções por Enterovirus/imunologia , Inflamação , Subunidade p40 da Interleucina-12/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor Toll-Like 9/metabolismo
4.
Aging Cell ; 20(12): e13509, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725922

RESUMO

Observational epidemiological studies have associated vitamin D deficiency with Alzheimer's disease (AD). However, whether vitamin D deficiency would result in some impacts on the vitamin D binding receptor (VDR) remains to be characterized in AD. Vitamin D helps maintain adult brain health genomically through binding with and activating a VDR/retinoid X receptor (RXR) transcriptional complex. Thus, we investigated the role of VDR in AD using postmortem human brains, APP/PS1 mice, and cell cultures. Intriguingly, although vitamin D was decreased in AD patients and mice, hippocampal VDR levels were inversely increased. The abnormally increased levels of VDR were found to be colocalized with Aß plaques, gliosis and autophagosomes, implicating a non-genomic activation of VDR in AD pathogenesis. Mechanistic investigation revealed that Aß upregulated VDR without its canonical ligand vitamin D and switched its heterodimer binding-partner from RXR to p53. The VDR/p53 complex localized mostly in the cytosol, increased neuronal autophagy and apoptosis. Chemically inhibiting p53 switched VDR back to RXR, reversing amyloidosis and cognitive impairment in AD mice. These results suggest a non-genomic rewiring of VDR to p53 is key for the progression of AD, and thus VDR/p53 pathway might be targeted to treat people with AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Autofagia/genética , Proteína Supressora de Tumor p53/metabolismo , Deficiência de Vitamina D/complicações , Vitamina D/metabolismo , Animais , Humanos , Camundongos
5.
Angew Chem Int Ed Engl ; 60(8): 4014-4017, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33191624

RESUMO

In living systems, non-equilibrium states that control the assembly-disassembly of cellular components underlie the gradual complexification of life, whereas in nonliving systems, most molecules follow the laws of thermodynamic equilibrium to sustain dynamic consistency. Little is known about the roles of non-equilibrium states of interactions between supramolecules in living systems. Here, a non-equilibrium state of interaction between supramolecular lipopolysaccharide (LPS) and Aß42, an aggregate-prone protein that causes Alzheimer's disease (AD), was identified. Structurally, Aß42 presents a specific groove that is recognized by the amphiphilicity of LPS bait in a non-equilibrium manner. Functionally, the transient complex elicits a cellular response to clear extracellular Aß42 deposits in neuronal cells. Since the impaired clearance of toxic Aß42 deposits correlates with AD pathology, the non-equilibrium LPS and Aß42 could represent a useful target for developing AD therapeutics.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lipopolissacarídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Ligação Proteica
6.
Sci Rep ; 5: 9633, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25910225

RESUMO

Identification and functional analysis of genes from genetically altered chromosomal regions would suggest new molecular targets for cancer diagnosis and treatment. Here we performed a genome-wide analysis of chromosomal copy number alterations (CNAs) in matching sets of colon mucosa-adenoma-carcinoma samples using high-throughput oligonucleotide microarray analysis. In silico analysis of NCBI GEO and TCGA datasets allowed us to uncover the significantly altered genes (p ≤ 0.001) associated with the identified CNAs. We performed quantitative PCR analysis of the genomic and complementary DNA derived from primary mucosa, adenoma, and carcinoma samples, and confirmed the recurrent loss and down-regulation of PTPRM in colon adenomas and carcinomas. Functional characterization demonstrated that PTPRM negatively regulates cell growth and colony formation, whereas loss of PTPRM promotes oncogenic cell growth. We further showed that, in accordance to Knudson's two-hit hypothesis, inactivation of PTPRM in colon cancer was mainly attributed to loss of heterozygosity and promoter hypermethylation. Taken together, this study demonstrates a putative tumor suppressive role for PTPRM and that genetic and epigenetic alterations of PTPRM may contribute to early step of colorectal tumorigenesis.


Assuntos
Adenoma/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Adenoma/patologia , Carcinoma/patologia , Proliferação de Células , Neoplasias Colorretais/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Bases de Dados Genéticas , Regulação para Baixo , Genótipo , Humanos , Mucosa Intestinal/metabolismo , Perda de Heterozigosidade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
7.
Cancer Lett ; 288(1): 75-85, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19646809

RESUMO

Members of the suppressor of cytokine-induced signaling (SOCS) family are negative regulators of cytokine signaling pathways. By mRNA differential display, we showed that SOCS6 was frequently down-regulated in gastric cancer (GC). Our data showed that allelic loss and promoter hypermethylation may account for the major mechanisms leading to SOCS6 inactivation. Ectopic expression of SOCS6 suppressed cell growth and colony formation, in part through eliciting intrinsic apoptotic pathway, accompanied with decreased mitochondrial membrane potential. Taken together, this study provides molecular and functional data supporting the importance of loss-of-function of SOCS6 as a frequent event in gastric tumorigenesis.


Assuntos
Adenocarcinoma/metabolismo , Proliferação de Células , Neoplasias Gástricas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Idoso , Apoptose , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Perda de Heterozigosidade , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo , Transfecção , Ensaio Tumoral de Célula-Tronco
8.
Gene ; 448(1): 64-73, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19716864

RESUMO

In this study, we report the expression and genomic structure of the gene encoding human suppressor of cytokine signaling 6 (SOCS6), and the characterization of the functional promoter region. The human SOCS6 gene, spanning 40 kb on chromosome 18q22.2, is composed of two exons separated by an intron of 35 kb. Two transcripts are ubiquitously expressed, and both encode the full-length open reading frame of SOCS6. A primer extension assay revealed that the major transcription initiation site is located 469 bp upstream the ATG codon. Luciferase promoter analysis demonstrated that the 5'-flanking region is able to drive transcription, and the CpG-rich sequences near the transcription initiation site are important for the TATA-less SOCS6 promoter activity. Analogous to SOCS1 and SOCS3, which are down-regulated in several human cancers, SOCS6 is expressed at lower levels in carcinomas of stomach and colon. We demonstrated that hypermethylation of the SOCS6 promoter is one of the mechanisms for the epigenetic regulation of SOCS6 expression. Firstly, in vitro methylation of the reporter promoter plasmid significantly suppressed the promoter activity. Secondly, SOCS6 expression in vivo was enhanced by treating cells with a methyltransferase inhibitor. The SOCS6 gene from various species shares significant homology in amino acid sequences, transcription factor binding motifs in promoter regions and the two-exon genomic structure, suggesting that the SOCS6 gene is highly conserved.


Assuntos
Cromossomos Humanos Par 18 , Genoma Humano , Regiões Promotoras Genéticas , Proteínas Supressoras da Sinalização de Citocina/genética , Região 5'-Flanqueadora , Animais , Linhagem Celular , Sequência Conservada , Éxons , Regulação da Expressão Gênica , Humanos , Íntrons , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA