Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 56(3)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366484

RESUMO

It is currently not understood whether cigarette smoke exposure facilitates sensitisation to self-antigens and whether ensuing auto-reactive T cells drive chronic obstructive pulmonary disease (COPD)-associated pathologies.To address this question, mice were exposed to cigarette smoke for 2 weeks. Following a 2-week period of rest, mice were challenged intratracheally with elastin for 3 days or 1 month. Rag1-/- , Mmp12-/- , and Il17a-/- mice and neutralising antibodies against active elastin fragments were used for mechanistic investigations. Human GVAPGVGVAPGV/HLA-A*02:01 tetramer was synthesised to assess the presence of elastin-specific T cells in patients with COPD.We observed that 2 weeks of cigarette smoke exposure induced an elastin-specific T cell response that led to neutrophilic airway inflammation and mucus hyperproduction following elastin recall challenge. Repeated elastin challenge for 1 month resulted in airway remodelling, lung function decline and airspace enlargement. Elastin-specific T cell recall responses were dose dependent and memory lasted for over 6 months. Adoptive T cell transfer and studies in T cells deficient Rag1-/- mice conclusively implicated T cells in these processes. Mechanistically, cigarette smoke exposure-induced elastin-specific T cell responses were matrix metalloproteinase (MMP)12-dependent, while the ensuing immune inflammatory processes were interleukin 17A-driven. Anti-elastin antibodies and T cells specific for elastin peptides were increased in patients with COPD.These data demonstrate that MMP12-generated elastin fragments serve as a self-antigen and drive the cigarette smoke-induced autoimmune processes in mice that result in a bronchitis-like phenotype and airspace enlargement. The study provides proof of concept of cigarette smoke-induced autoimmune processes and may serve as a novel mouse model of COPD.


Assuntos
Elastina , Doença Pulmonar Obstrutiva Crônica , Animais , Autoimunidade , Modelos Animais de Doenças , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Fumaça/efeitos adversos , Fumar/efeitos adversos
3.
Biomaterials ; 192: 429-439, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30500724

RESUMO

Elimination of airway inflammatory cells is essential for asthma control. As Bcl-2 protein is highly expressed on the mitochondrial outer membrane in inflammatory cells, we chose a Bcl-2 inhibitor, ABT-199, which can inhibit airway inflammation and airway hyperresponsiveness by inducing inflammatory cell apoptosis. Herein, we synthesized a pH-sensitive nanoformulated Bcl-2 inhibitor (Nf-ABT-199) that could specifically deliver ABT-199 to the mitochondria of bronchial inflammatory cells. The proof-of-concept study of an inflammatory cell mitochondria-targeted therapy using Nf-ABT-199 was validated in a mouse model of allergic asthma. Nf-ABT-199 was proven to significantly alleviate airway inflammation by effectively inducing eosinophil apoptosis and inhibiting both inflammatory cell infiltration and mucus hypersecretion. In addition, the nanocarrier or Nf-ABT-199 showed no obvious influence on cell viability, airway epithelial barrier and liver function, implying excellent biocompatibility and with non-toxic effect. The nanoformulated Bcl-2 inhibitor Nf-ABT-199 accumulates in the mitochondria of inflammatory cells and efficiently alleviates allergic asthma.


Assuntos
Apoptose/efeitos dos fármacos , Asma/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Sistemas de Liberação de Medicamentos , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular , Hipersensibilidade/tratamento farmacológico , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Sulfonamidas/uso terapêutico
4.
J Immunol ; 200(8): 2571-2580, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507104

RESUMO

Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD.


Assuntos
Morte Celular/fisiologia , Células Epiteliais/metabolismo , Inflamação/metabolismo , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Enfisema Pulmonar/metabolismo , Fumar/efeitos adversos
5.
Oncotarget ; 8(44): 78031-78043, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100445

RESUMO

BACKGROUND: Increasing randomized controlled trials (RCTs) indicate that bronchoscopic lung volume reduction (BLVR) is effective for severe emphysema. In this meta-analysis, we investigated the efficacy and safety of BLVR in patients with severe emphysema. METHODS: PubMed, Embase and the Cochrane Library and reference lists of related articles were searched, and RCTs that evaluated BLVR therapy VS conventional therapy were included. Meta-analysis was performed only when included RCTs ≥ 2 trials. RESULTS: In total, 3 RCTs for endobronchial coils, 6 RCTs for endobronchial valves (EBV) and 2 RCTs for intrabronchial valves (IBV) were included. Compared with conventional therapy, endobronchial coils showed better response in minimal clinically important difference (MCID) for forced expiratory volume in 1s (FEV1) (RR = 2.37, 95% CI = 1.61 - 3.48, p < 0.0001), for 6-min walk test (6MWT) (RR = 2.05, 95% CI = 1.18 - 3.53, p = 0.01), and for St. George's Respiratory Questionnaire (SGRQ) (RR = 2.32, 95% CI = 1.77 - 3.03, p < 0.00001). EBV therapy also reached clinically significant improvement in FEV1 (RR = 2.96, 95% CI = 1.49 - 5.87, p = 0.002), in 6MWT (RR = 2.90, 95% CI = 1.24 - 6.79, p = 0.01), and in SGRQ (RR = 1.53, 95% CI = 1.22 - 1.92, p = 0.0002). Both coils and EBV treatment achieved statistically significant absolute change in FEV1, 6MWT, and SGRQ from baseline, also accompanied by serious adverse effects. Furthermore, subgroup analysis showed there was no difference between homogeneous and heterogeneous emphysema in coils group. However, IBV group failed to show superior to conventional group. CONCLUSIONS: Current meta-analysis indicates that coils or EBV treatment could significantly improve pulmonary function, exercise capacity, and quality of life compared with conventional therapy. Coils treatment could be applied in homogeneous emphysema, but further trials are needed.

6.
Toxicol Lett ; 270: 17-24, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28185985

RESUMO

Airway and lung inflammation is a fundamental hallmark of chronic obstructive pulmonary disease (COPD). Activating transcription factor 3 (ATF3) has been reported to negatively regulate many pro-inflammatory cytokines and chemokines. However, little is known about the impact of ATF3 on the inflammatory response of COPD. Since cigarette smoke (CS) is considered to be the most important risk factor in the etiology of COPD, we attempted to investigate the effects and molecular mechanisms of ATF3 in CS-induced inflammation. We observed an increase in the expression of ATF3 in the lung tissues of CS-exposed mice and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. In vitro results indicated that ATF3 inhibition significantly increased the expression of proinflammatory cytokines interleukin 6 (IL6) and interleukin 8 (IL8) in CSE-stimulated HBE cells. Furthermore, in vivo data verified that CS induced inflammatory cell recruitment around the bronchus. In addition, neutrophil infiltration in bronchoalveolar lavage fluid (BALF) of CS-exposed Atf3-/- mice was markedly higher than in stimulated WT mice. Finally, ATF3 deficiency increased the in vitro and in vivo expression and phosphorylation of nuclear factor-κB (NF-κB), a positive mediator of inflammation. Thus, this study shows that ATF3 plays an important role in the negative regulation of CS-induced pro-inflammatory gene expression through downregulating NF-κB phosphorylation.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fumar/efeitos adversos , Fator 3 Ativador da Transcrição/genética , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Regulação para Baixo , Repressão Epigenética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/etiologia , Inflamação/genética , Interleucina-6/genética , Interleucina-8/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Infiltração de Neutrófilos/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Regulação para Cima
7.
Autophagy ; 12(12): 2286-2299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658023

RESUMO

MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 ß)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Epitélio/enzimologia , Epitélio/patologia , Pulmão/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Epitélio/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Receptor 4 Toll-Like/metabolismo
8.
Sci Rep ; 6: 21515, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861679

RESUMO

Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-ß1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-ß1. Suhuang might be a promising therapy for patients with allergic asthma in the future.


Assuntos
Asma/tratamento farmacológico , Medicina Tradicional Chinesa , Preparações de Plantas/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lamiaceae/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA