Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 241: 106529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670516

RESUMO

Mud crab (Scylla paramamosain) has become an important mariculture crab along the southeast coast of China due to its strong adaptability, delicious taste, and rich nutrition. Several vertebrate steroid hormones and their synthesis-related genes and receptors have been found in crustaceans, but there are few reports on their synthesis process and mechanism. 3-beta-hydroxysteroid dehydrogenase (HSD3B) is a member of the Short-chain Dehydrogenase/Reductase (SDR) family, and an indispensable protein in vertebrates' steroid hormone synthesis pathway. In this study, the SpHsd3b gene sequence was obtained from the transcriptome data of S. paramamosain, and its full-length open reading frame (ORF) was cloned. The spatial and temporal expression pattern of SpHsd3b was performed by quantitative real-time PCR (qRT-PCR). SpHsd3b dsRNA interference (RNAi) and HSD3B inhibitor (trilostane) were used to analyze the function of SpHSD3B. The results showed that the SpHsd3b gene has an 1113 bp ORF encoding 370 amino acids with a 3ß-HSD domain. SpHSD3B has lower homology with HSD3B of vertebrates and higher homology with HSD3B of crustaceans. SpHsd3b was expressed in all examined tissues in mature crabs, and its expression was significantly higher in the testes than in the ovaries. SpHsd3b expression level was highest in the middle stage of testicular development, while its expression was higher in the early and middle stages of ovarian development. RNAi experiment and trilostane injection results showed that SpHSD3B had regulatory effects on several genes related to gonadal development and steroid hormone synthesis. 15-day trilostane suppression could also inhibit ovarian development and progesterone level of hemolymph. According to the above results, crustaceans may have steroid hormone synthesis pathways like vertebrates, and the Hsd3b gene may be involved in the gonadal development of crabs. This study provides further insight into the function of genes involved in steroid hormone synthesis in crustaceans.


Assuntos
Braquiúros , Filogenia , Animais , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Braquiúros/enzimologia , Feminino , Masculino , Sequência de Aminoácidos , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Clonagem Molecular , Interferência de RNA , Di-Hidrotestosterona/análogos & derivados
2.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636738

RESUMO

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Assuntos
Anguilla , Proteínas de Peixes , Fator de Transcrição GATA1 , NF-kappa B , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Anguilla/genética , Anguilla/imunologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Transdução de Sinais
3.
Animals (Basel) ; 13(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835763

RESUMO

IFNAR1, one of the type I IFN receptors, is crucial to mammalian host defense against viral invasion. However, largely unknown is the immunological role of the fish teleost protein IFNAR1, also known as CRFB5. We have successfully cloned the whole cDNA of the Japanese eel's (Anguilla japonica) CRFB5a homolog, AjCRFB5a. The two fibronectin-3 domains and the transmembrane region (238-260 aa) of AjCRFB5a are normally present, and it shares a three-dimensional structure with zebrafish, Asian arowana, and humans. According to expression analyses, AjCRFB5a is highly expressed in all tissues found, particularly the liver and intestine. In vivo, Aeromonas hydrophila, LPS, and the viral mimic poly I:C all dramatically increased AjCRFB5a expression in the liver. Japanese eel liver cells were reported to express AjCRFB5a more strongly in vitro after being exposed to Aeromonas hydrophila or being stimulated with poly I: C. The membranes of Japanese eel liver cells contained EGFP-AjCRFB5a proteins, some of which were condensed, according to the results of fluorescence microscopy. Luciferase reporter assays showed that AjCRFB5a overexpression strongly increased the expression of immune-related genes in Japanese eel liver cells, such as IFN1, IFN2, IFN3, IFN4, IRF3, IRF5, and IRF7 of the type I IFN signaling pathway, as well as one of the essential antimicrobial peptides LEAP2, in addition to significantly inducing human IFN-promoter activities in HEK293 cells. Additionally, RNA interference (RNAi) data demonstrated that knocking down AjCRFB5a caused all eight of those genes to drastically lower their expression in Japanese eel liver cells, as well as to variable degrees in the kidney, spleen, liver, and intestine. Our findings together showed that AjCRFB5a participates in the host immune response to bacterial infection by inducing antimicrobial peptides mediated by LEAP2 and favorably modulates host antiviral immune responses by activating IRF3 and IRF7-driven type I IFN signaling pathways.

4.
J Steroid Biochem Mol Biol ; 232: 106334, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236374

RESUMO

Aromatase is a key enzyme that catalyzes the biosynthesis of estrogens. Previous study indicated that putative tissue-specific promoters of the one aromatase gene (cyp19a1) may drive the differential regulatory mechanisms of cyp19a1 expression in Anguilla japonica. In the present study, for elucidating the transcription characteristics and the function of putative tissue-specific promoters of cyp19a1 in the brain-pituitary-gonad (BPG) axis during vitellogenesis, we investigated the transcriptional regulation of cyp19a1 by 17ß-estrogen (E2), testosterone (T), or human chorionic gonadotropin (HCG) in A. japonica. The expression of estrogen receptor (esra), androgen receptor (ara), or luteinizing hormone receptor (lhr) was up-regulated as cyp19a1 in response to E2, T, or HCG, respectively in the telencephalon, diencephalon, and pituitary. The expression of cyp19a1 was also upregulated in the ovary by HCG or T in a dose-dependent manner. Unlike in the brain and pituitary, the expression of esra and lhr, rather than ara, was upregulated by T in the ovary. Subsequently, four primary subtypes of 5'-untranslated terminal regions of cyp19a1 transcripts and the corresponding two 5' flanking regions (promoter P.I and P.II) were identified. The P.II existed in all BPG axis tissues, whereas the P.I with strong transcriptional activity was brain- and pituitary-specific. Furthermore, the transcriptional activity of promoters, the core promoter region, and the three putative hormone receptor response elements were validated. The transcriptional activity did not change when the HEK291T cells co-transfected with P.II and ar vector were exposed to T. These results suggested that the expression of cyp19a1 was upregulated indirectly through esra and lhr rather than ara by T in the ovary, whereas the expression of cyp19a1 was upregulated directly through androgen receptor and the downstream androgen response element of tissue-specific P.I in the brain and pituitary. The results of the study reveal the regulatory mechanisms of estrogen biosynthesis and provide a reference for optimizing the technology of artificially induced maturation in eels.


Assuntos
Anguilla , Feminino , Animais , Humanos , Anguilla/genética , Anguilla/metabolismo , Aromatase/genética , Aromatase/metabolismo , Receptores Androgênicos/genética , Ovário/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Estrogênios/metabolismo , Encéfalo/metabolismo , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo
5.
Fish Shellfish Immunol ; 131: 662-671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36341870

RESUMO

The Japanese eel (Anguilla japonica) experiences dramatic internal and external environmental changes during its transoceanic reproductive migrations. Here, we assess immune function changes in the primary and secondary immune organs (head kidney and spleen) of A. japonica during artificial ovarian maturation at the previtellogenic (PV), midvitellogenic (MV), and ovulating (OV) stages by transcriptome analyses. Stress responses were also assessed by determining the serum concentrations of lysozyme, alkaline phosphatase, acid phosphatase, total antioxidant capacity, and superoxide dismutase. Our results showed that together with increased serum 17ß-estrogen and testosterone, lysozyme activity and antioxidant capacity were suppressed during artificial ovarian maturation. Comparisons across these developmental stages identified 60 (head kidney) and 36 (spleen) differentially expressed genes associated with the immune system. Genes related to the key activation markers of innate immune function, such as CXCL10, CXCL11, CCL20, HSP90B, MMP9, and MMP13, were upregulated and significantly enriched in the interleukin-17 signaling pathway. Adaptive immune function-related genes (IGM and MHC1) were upregulated in the head kidney from PV to MV, and their levels increased thereafter in the spleen. Moreover, a correlation between Pax5 expression and IGM expression in the spleen of MV (IGM+/Pax5+) and OV (IGM++/Pax5-) stage suggests that adaptive immune function was enhanced during ovarian maturation. To our knowledge, the present study is the first to describe transcriptome profiling of immune organs during ovarian maturation in teleost. Our findings suggest that the interleukin-17 pathway and IgM may play important roles in spawning.


Assuntos
Anguilla , Animais , Anguilla/genética , Anguilla/metabolismo , Interleucina-17/genética , Muramidase/metabolismo , Antioxidantes/metabolismo , Perfilação da Expressão Gênica/veterinária , Imunidade , Imunoglobulina M/genética
6.
Theriogenology ; 120: 16-24, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30081244

RESUMO

Endocrine effects as 11-ketotestosterone (11-KT), an unaromatizable androgen, regulating the follicles growth in the previtellogenic stage of eel reproduction have been widely elucidated. However, the influence of aromatizable androgens on the brain-pituitary-gonad axis during oogenesis in A. japonica has not been clearly elaborated. In the study, androstenedione (AD) and 17α-methyltestosterone (MT) were employed together to induce ovary development of seven-year-old female Anguilla japonica through feeding or exposure in the migration season. After female A. japonica had been fed with commercial diet containing 5 mg AD and MT kg d-1 body weight respectively for 45 d in fresh water (Trial I), the development of oocytes still remained at the oil droplet stage, but the GSI and follicle diameter increased significantly. The serum 11-KT level and expression of liver vitellogenin mRNA were significantly elevated. After female fish had been exposed to seawater containing 50 µg L-1 AD and MT respectively for 45 d (Trial II), the ovaries of A. japonica almost reached midvitellogenic stage and the GSI and follicle diameter increased significantly. Yolk granular layer was observed in the peripheral ooplasm. The serum 11-KT level maintained consistently low, and the serum E2 level declined significantly to a relatively low level. The expression levels of ovarian arα and cyp19a1, brain (with pituitary together) mGnRH and lhß increased significantly. The results showed that A. japonica in Trial II appeared a higher ovarian development than those in Trial I. These findings indicated that AD and MT increased the oil droplet and enlarged follicle diameter in previtellogenic stage, while the vitellogenesis and gonadotropin release did not occur in Trial I. In Trial II, AD and MT promoted vitellogenesis by stimulating the ovary expression of arα and by up-regulating brain mGnRH and pituitary lhß expression.


Assuntos
Androstenodiona/farmacologia , Anguilla/fisiologia , Metiltestosterona/farmacologia , Ovário/efeitos dos fármacos , Indução da Ovulação/veterinária , Anguilla/crescimento & desenvolvimento , Animais , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/patologia , Indução da Ovulação/métodos , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA