Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Biochem Cell Biol ; 131: 105905, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359084

RESUMO

Beyond its well-known canonical function as a tumor suppressor, p53 is also involved in numerous cellular processes through altered transcription under both normal and pathological conditions. The functional diversity of p53 outputs is complex and dependent on cell context. However, the underlying mechanisms responsible for this diversity remain largely unclear. The emerging evidence of p53 mutations involved in regulating endocytic trafficking and signaling, in tandem to promote malignancy (invasion, exosome biogenesis and immune evasion), sheds light on possible mechanisms behind the p53-driven complexity. The interrelated nature of endocytic trafficking and receptor signaling that form dynamic and adaptable feedback loops - either positive or negative - functions to modulate multiple cellular outputs. Biasing the tunable endocytic trafficking and receptor signaling network by mutant p53 expands the purview of p53, allowing its contribution to diverse and aggressive phenotypes. In this review, we explore recent studies in which the novel role of mutant p53 in altering endocytic trafficking to bias receptor signaling and drive transforming phenotypes is revealed. Understanding the complex crosstalk of mutant p53, endocytic trafficking and receptor signaling will allow the development of therapies to selectively target p53-altered endocytic processes.


Assuntos
Endocitose/genética , Mutação com Ganho de Função , Integrina beta1/genética , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Endossomos/genética , Endossomos/metabolismo , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta1/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ribonuclease III/genética , Ribonuclease III/imunologia , Transdução de Sinais , Evasão Tumoral , Proteína Supressora de Tumor p53/imunologia
2.
Proc Natl Acad Sci U S A ; 117(50): 31591-31602, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257546

RESUMO

Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Análise por Conglomerados , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Intravital/métodos , Substâncias Luminescentes/química , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , RNA Interferente Pequeno/metabolismo
3.
Traffic ; 21(9): 590-602, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32613646

RESUMO

Integrin-mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease-specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure ß1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design.


Assuntos
Endocitose , Integrina beta1 , Adesão Celular , Movimento Celular , Integrina beta1/metabolismo , Integrinas/metabolismo , Transporte Proteico
4.
Elife ; 82019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31268421

RESUMO

During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.


Assuntos
Ativação Linfocitária , Multimerização Proteica , Transdução de Sinais , Linfócitos T/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Transporte Proteico , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
5.
J Cell Biol ; 218(6): 1928-1942, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31043431

RESUMO

Multiple mechanisms contribute to cancer cell progression and metastatic activity, including changes in endocytic trafficking and signaling of cell surface receptors downstream of gain-of-function (GOF) mutant p53. We report that dynamin-1 (Dyn1) is up-regulated at both the mRNA and protein levels in a manner dependent on expression of GOF mutant p53. Dyn1 is required for the recruitment and accumulation of the signaling scaffold, APPL1, to a spatially localized subpopulation of endosomes at the cell perimeter. We developed new tools to quantify peripherally localized early endosomes and measure the rapid recycling of integrins. We report that these perimeter APPL1 endosomes modulate Akt signaling and activate Dyn1 to create a positive feedback loop required for rapid recycling of EGFR and ß1 integrins, increased focal adhesion turnover, and cell migration. Thus, Dyn1- and Akt-dependent perimeter APPL1 endosomes function as a nexus that integrates signaling and receptor trafficking, which can be co-opted and amplified in mutant p53-driven cancer cells to increase migration and invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Dinamina I/metabolismo , Endossomos/metabolismo , Mutação , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Adesão Celular , Membrana Celular , Dinamina I/genética , Endocitose , Receptores ErbB/genética , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transporte Proteico , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
6.
Wien Med Wochenschr ; 166(7-8): 196-204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26861668

RESUMO

This brief overview of endocytic trafficking is written in honor of Renate Fuchs, who retires this year. In the mid-1980s, Renate pioneered studies on the ion-conducting properties of the recently discovered early and late endosomes and the mechanisms governing endosomal acidification. As described in this review, after uptake through one of many mechanistically distinct endocytic pathways, internalized proteins merge into a common early/sorting endosome. From there they again diverge along distinct sorting pathways, back to the cell surface, on to the trans-Golgi network or across polarized cells. Other transmembrane receptors are packaged into intraluminal vesicles of late endosomes/multivesicular bodies that eventually fuse with and deliver their content to lysosomes for degradation. Endosomal acidification, in part, determines sorting along this pathway. We describe other sorting machinery and mechanisms, as well as the rab proteins and phosphatidylinositol lipids that serve to dynamically define membrane compartments along the endocytic pathway.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Corpos Multivesiculares/fisiologia , Animais , Clatrina/fisiologia , Humanos
7.
Oncologist ; 20(6): 674-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26018661

RESUMO

BACKGROUND: Lack of access to available cancer clinical trials has been cited as a key factor limiting trial accrual, particularly among medically underserved populations. We examined the trends and factors in clinical trial availability within a major U.S. safety-net hospital system. MATERIALS AND METHODS: We identified cancer clinical trials activated at the Harold C. Simmons Cancer from 1991 to 2014 and recorded the characteristics of the trials that were and were not activated at the Parkland Health and Hospital System satellite site. We used univariate and multivariate logistic regression to determine the association between trial characteristics and nonactivation status, and chi-square analysis to determine the association between the trial characteristics and the reasons for nonactivation. RESULTS: A total of 773 trials were identified, of which 152 (20%) were not activated at Parkland. In multivariable analysis, nonactivation at Parkland was associated with trial year, sponsor, and phase. Compared with the 1991-2006 period, clinical trials in the 2007-2014 period were almost eightfold more likely not to be activated at Parkland. The most common reasons for nonactivation at Parkland were an inability to perform the study procedures (27%) and the startup costs (15%). CONCLUSION: Over time, in this single-center setting, a decreasing proportion of cancer clinical trials were available to underserved populations. Trial complexity and costs appeared to account for much of this trend. Efforts to overcome these barriers will be key to equitable access to clinical trials, efficient accrual, and the generalizability of the results. IMPLICATIONS FOR PRACTICE: Despite numerous calls to increase and diversify cancer clinical trial accrual, the present study found that cancer clinical trial activation rates in a safety-net setting for medically underserved populations have decreased substantially in recent years. The principal reasons for study nonactivation were expenses and an inability to perform the study-related procedures, reflecting the increasing costs and complexity of cancer clinical trials. Future efforts need to focus on strategies to mitigate the increasing disparity in access to clinical research and cutting-edge therapies, which also threatens to hinder study accrual, completion rates, and generalizability.


Assuntos
Ensaios Clínicos como Assunto , Neoplasias/epidemiologia , Populações Vulneráveis , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA