Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 358: 128-139, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122597

RESUMO

Microalgae are highly photosynthetic unicellular organism that have increased demand in the recent days owing to the presence of valuable cellular metabolites. They are ubiquitous in terrestrial and aquatic habitats, rich in species diversity and are capable of generating significant biomass by efficiently using CO2, light and other nutrients like nitrogen, phosphate etc., The microalgal biomass has upsurged in economic potential and is used as both food and feed in many countries across the world, accounting for more than 75 % of annual microalgal biomass production in the past decades. The microalgal cells are sustainable resource that synthesize various secondary metabolites such as carotenoids, polysaccharides, polyphenols, essential amino acids, sterols, and polyunsaturated fatty acids (PUFA). Microalgae and its derived compounds possess significant pharmacological and biological effects such as antioxidant, anti-inflammatory, anti-cancer, immunomodulatory and anti-obesity. Because of their potential health promoting properties, the utilization of microalgae and its derived substances in food, pharmaceutical and cosmetic industries has skyrocketed in recent years. In this context, the current review discusses about the benefits of microalgae and its bioactive compounds against several neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).


Assuntos
Fármacos Antiobesidade , Microalgas , Doenças Neurodegenerativas , Aminoácidos Essenciais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Antiobesidade/metabolismo , Antioxidantes/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Humanos , Microalgas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Nitrogênio/metabolismo , Preparações Farmacêuticas/metabolismo , Fosfatos , Polissacarídeos/metabolismo , Esteróis/metabolismo
2.
Int J Artif Organs ; 45(12): 1021-1027, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35993241

RESUMO

PURPOSE: In this work, a blend of collagen, physiologically clotted fibrin (PCF), and silver nanoparticles (AgNPs) is used to develop a nanobioscaffold (NBS), for their possible application in wound dressing materials. METHODS: The prepared NBS were evaluated using physicochemical, mechanical, and antibacterial properties. The NBS cell viability was demonstrated in a biocompatibility study using the human keratinocyte cell line (HaCaT). RESULTS: The results demonstrated that the NBS had excellent tensile strength (22.15 ± 0.05 MPa), elongation at break (13.32 ± 0.09%), and water absorption (97.51 ± 0.08). The in-vitro study demonstrated its biocompatible nature. NBS exhibited significant antibacterial activity against the Gram-negative and Gram-positive bacteria. CONCLUSION: The NBS with required mechanical strength, antibacterial activity, and biocompatibility may be tested as a wound material in rats after getting the necessary approval.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Ratos , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Fibrina , Colágeno/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
6.
Oxid Med Cell Longev ; 2022: 9233650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602098

RESUMO

Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Pentoxifilina , Silimarina , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Pentoxifilina/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Silibina/uso terapêutico
8.
Nanomedicine (Lond) ; 17(24): 1855-1869, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35311343

RESUMO

Most anticancer drugs often fail in clinical trials due to poor solubility, poor bioavailability, lack of targeted delivery and several off-target effects. Polymeric nanoparticles such as poly(lactide), poly(lactic-co-glycolic acid), ALB-loading paclitaxel (Abraxane® ABI-007), lomustine-loaded chitosan, gelatin (decorated with EGF receptor-targeted biotinylated EGF) and so on offer controlled and sustained drug-release properties, biocompatibility and promising anticancer effects. EGF, folic acid, transferrin, sigma and urokinase plasminogen activator receptors-targeting nano preparations improve bioavailability and accumulate drugs on the lung tumor cell surface. However, route of administration, size, pharmacokinetic properties, immune clearance and so on hamper nanomedicines' clinical uses. This review focuses on the benefits, avenues and challenges of nanoparticle-based drug-delivery systems for lung cancer treatment.


Globally, 2 million people are dying annually due to lung cancer and it is the leading cause of death among men in 93 countries. Currently, lung cancer medicine does not reach tumor sites and induces several side effects. Therefore, lung cancer medicines are not effectively reducing lung cancer. One of the efficient ways of delivering anticancer drugs to improve targeted delivery is the conjugation of drugs with cancer cell surface-targeting moieties and encapsulation of unique nanocarriers/nanoparticles. Specific nanoencapsulated drugs selectively target EGF receptors, folic acid receptors, transferrin receptors, sigma receptors and urokinase plasminogen activator receptors on the lung cancer cell surface and deliver the anticancer drugs, leading to cancer regression.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos , Fator de Crescimento Epidérmico/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Paclitaxel/uso terapêutico , Preparações Farmacêuticas , Portadores de Fármacos/uso terapêutico , Linhagem Celular Tumoral
11.
J Popul Ther Clin Pharmacol ; 28(2): e29-e40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016267

RESUMO

Nanotechnology explores a variety of promising approaches in the field of biomedical sciences. For biogenesis of selenium (Se) nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, proteins, and other phytochemicals which act as reducing agent to produce and stabilize nanoparticles. Nanotechnology is also widely practiced in medicine, agriculture, and many other technologies. This review is focused on green synthesis and its latest developments for the fabrication of Se nanoparticles. This research article also summarizes Se nanoparticles and different plants individually and combined along with their characterizations, using techniques such as ultraviolet-visible spectroscopy, transmission electron microscopy, and scanning electron microscopy, which specified the range, shape, size, and other specifications to easily identify and explore the studies further.


Assuntos
Nanopartículas Metálicas , Selênio , Humanos , Nanotecnologia
12.
Oral Dis ; 28(3): 559-567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33570800

RESUMO

Oral cancer is one of the most leading cancer responsible for significant morbidity and mortality. The sirtuins (SIRTs) are a family of class III histone deacetylases and are known to regulate a variety of molecular signaling associated with different cancer types including oral malignancies. SIRT1 acts as bifunctional in a variety of cancer. In oral cancer, SIRT1 seems to work as a tumor suppressor. The carcinogenic potential of SIRT1 is also reported in oral cancer, and hence, its role is still ambiguous. SIRT2 is also said to play a dual-faced role in different types of cancers. However, in oral cancer, SIRT2 is not studied and its role remains obscure. SIRT3 expression was positively correlated with oral malignancies. However, studies also showed the anti-cancer role of SIRT3 in oral cancer. SIRT7 loss was observed in oral cancer cells, while its overexpression caused the suppression of oral cancer cells proliferation, migration, and invasiveness. The role of other SIRTs in oral cancer was studied meagerly or reports not available. To date, only the roles of SIRT1, SIRT3, and SIRT7 have been reported in oral malignancies. Therefore, understanding the regulatory mechanisms employed by sirtuins to modulate oral cancer is important for developing potential anti-cancer therapeutic strategies.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Sirtuínas , Proliferação de Células , Humanos , Sirtuínas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
13.
J Food Biochem ; 45(1): e13572, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249629

RESUMO

In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1ß, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1ß, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.


Assuntos
Flavanonas , Nanopartículas , Células A549 , Anti-Inflamatórios/farmacologia , Flavanonas/farmacologia , Humanos
14.
Bioinformation ; 16(11): 817-827, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34803254

RESUMO

It is of interest to study the cytotoxicity of silibinin assisted silver nanoparticles in human colorectal (HT-29) cancer cells. Silver nanoparticles were synthesized using silibinin as a reducing agent. The synthesized silibinin assisted silver nanoparticles ( SSNPs) were characterized and analyzed using a transmission electron microscope and spectrophotometer. The SSNPs synthesized in this study are spherical and their size ranges from 10 to 80 nm. HT-29 cells were treated with different concentrations (2, 4, 6, 8 and 10 ng/mL) of SSNPs and cytotoxicity was evaluated. The apoptosis was using flow cytometry. p53 protein expression using western blot. SSNPs are induced a decrease in viability and increased concentration-dependent cytotoxicity in HT-29 cells. SSNPs treatment also caused apoptosis-related morphological changes. SSNPs treatments at 8 and 16 ng/ml showed a prominent apoptotic change i.e., 70.3% and 83.6% respectively, and decreased viability of HT-29 cells 20% and 11.2% respectively as compared to control cells. SSNPs treatments induced p53 expression in HT-29 cells. Data shows that SSNPs have the potential to induce apoptosis in colorectal cancer cells. This provides insights for the further evaluation of SSNPs in fighting colon cancer.

15.
Bioinformation ; 16(11): 878-881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34803262

RESUMO

Design and development of effective anti-virals in combating CoVid-19 is a great challenge worldwide. Known drugs such as chloroquine, lopinavir, favipiravir and remdesivir are used in the management of CoVid - 19. It is known that Ivermectin and remdesivir both are effective against filoviruses, paramyxo viruses. Available data also shows that ivermectin and remedesivir repress the replication of SARS-CoV-2. Thus, we document the potential use of ivermectin and remdesivir in the management of CoVid -19.

16.
Bioinformation ; 16(11): 965-973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34803274

RESUMO

Astaxanthin (AXN) is known to have health benefits by epidemiological studies. Therefore, it is of interest to assess the effect of AXN (derived from indigenous unicellular green alga Haematococcus lacustris) to modulate cell cycle arrest, lysosomal acidification and eventually apoptosis using in vitro in A549 lung cancer cells. Natural extracts of astaxanthin were obtained by standardized methods as reported earlier and characterized by standard HPLC and MS. Treatment of A549 cells with AXN (purified fraction) showed significant reduction in cell viability (about 50%) as compared to crude extract at 50µM concentration. Thus, we show the anticancer effects and lysosomal acidification in A549 cells by Astaxanthin from Haematococcus lacustris for further consideration. Together, our results demonstrated the anticancer potential of AXN from Haematococcus lacustris, which is found to be mediated via its ability to induce cell cycle arrest, lysosomal acidification and apoptotic induction.

17.
Biomed Pharmacother ; 108: 838-844, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372895

RESUMO

In this study we investigated the hepatoprotective effects and possible mechanism of Acacia catechu in acetaminophen (APAP) induced hepatotoxicity using female Wistar rat model. Hepatotoxicity was induced by oral administration of acetaminophen (750 mg/kg body weight) for 24 h. The seed (400 mg/kg body weight) and bark (400 mg/kg body weight) extract's treated groups exhibited hepatoprotective effects and was compared with well-known clinical anti-dote N-acetylcysteine (NAC). When groups treated with acetaminophen, significant increase of liver weight/body weight ratio, liver function enzymes such as alanine aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) and decrease of antioxidant enzymes such as glutathione (GSH) and superoxide dismutase (SOD) were observed. The histopathology of APAP treated groups also showed moderate degree of sinusoidal congestion, centrilobular necrosis with polymorph nuclear cells infiltration, marked vacuolations and congestion. However, pretreatment with seed or bark extract groups decreased LPO accumulation, reduced the liver function enzymes and increased antioxidant defense enzymes. Moreover, histopathology of seed extract treated groups showed normal architecture whereas bark extract treated groups exhibited mild degree of vacuolations in the hepatocytes with minimal sinusoidal congestion. Taken together, our study concludes that A. catechu seed extract to be a more promising agent for protecting liver from APAP induced hepatotoxicity.


Assuntos
Acacia/química , Acetaminofen/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Casca de Planta/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Sementes/química , Alanina Transaminase/metabolismo , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
18.
Microb Pathog ; 117: 68-72, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427709

RESUMO

The present study elucidates an eco-friendly method for synthesizing silver nanoparticles using Phenerochaete chrysosporium (MTCC-787), its bactericidal and cytotoxic effect were studied. The formation of nanoparticles was evidenced by color change and UV-Vis spectroscopy. Atomic Force Microscope and Transmission electron microscope, showed spherical and oval shapes particles in the sizes ranging between 34 and 90 nm. The biosynthesised silver nanoparticles showed significant antibacterial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis at a high dose. Further, the nanoparticles observed to be non-toxic at 12.5 µg/ml towards fibroblast cells.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Basidiomycota/metabolismo , Nanopartículas Metálicas/química , Prata/química , Fibroblastos/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
19.
J Adv Pharm Technol Res ; 8(4): 143-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184846

RESUMO

Oral cancer is in approximately 30% of all cancers in India. This study was conducted to evaluate the cytotoxic activity of ethanolic extract of Acacia catechu bark (ACB) against human squamous cell carcinoma cell line-25 (SCC-25). Cytotoxic effect of ACB extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide assay. A. catechu extract was treated SCC-25 cells with 25 and 50 µg/mL for 24 h. Apoptosis markers such as caspases-8 and 9, bcl-2, bax, and cytochrome c (Cyt-c) were done by RT-PCR. Morphological changes of ACB treated cells were evaluated using acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation were evaluated using propidium iodide (PI) staining. Further, cell cycle analysis was performed using flow cytometry. A. catechu treatment caused cytotoxicity in SCC-25 cells with an IC50 of 52.09 µg/mL. Apoptotic marker gene expressions were significantly increased on ACB treatment. Staining with AO/EB and PI shows membrane blebbing and nuclear membrane distortion, respectively, and it confirms the apoptosis induction in SCC-25 cells. These results suggest that ACB extract can be used as a modulating agent in oral squamous cell carcinoma.

20.
Pharmacogn Mag ; 13(Suppl 3): S405-S411, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29142391

RESUMO

BACKGROUND: Acacia catechu Willd (Fabaceae), commonly known as catechu, cachou, and black cutch, has been studied for its hepatoprotective, antipyretic, antidiarrheal, hypoglycemic, anti-inflammatory, immunomodulatory, antinociceptive, antimicrobial, free radical scavenging, and antioxidant activities. OBJECTIVE: We evaluated the cytotoxic activity of ethanol extract of A. catechu seed (ACS) against SCC-25 human oral squamous carcinoma cell line. METHODS: Cytotoxic effect of ACS extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, using concentrations of 0.1-1000 µg/mL for 24 h. A. catechu ethanol seed extract was treated SCC-25 cells with 25 and 50 µg/mL. At the end of treatment period, apoptotic marker gene expressions such as caspase 8, 9, Bcl-2, Bax, and cytochrome c were evaluated by semiquantitative reverse transcription-polymerase chain reaction. Morphological changes of ACS treated SCC-25 cells was evaluated by acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation was evaluated by propidium iodide (PI) staining. RESULTS: A. catechu ethanol seed extract treatment caused cytotoxicity in SCC-25 cells with an IC50 value of 100 µg/mL. Apoptotic markers caspases 8 and 9, cytochrome c, Bax gene expressions were significantly increased upon ACS extract treatment indicate the apoptosis induction in SCC-25 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. Staining with AO/EB and PI shows membrane blebbing, and nuclear membrane distortion further confirms the apoptosis induction by ACS treatment in SCC-25 cells. CONCLUSION: The ethanol seed extracts of A. catechu was found to be cytotoxic at lower concentrations and induced apoptosis in human oral squamous carcinoma SCC-25 cells. SUMMARY: Acacia catechu ethanolic seed extract contains phytochemicals such as epicatechin, rutin, and quercetinAcacia catechu seed (ACS) extract significantly (P < 0.001) inhibits the active proliferation of human oral squamous carcinoma (SCC-25) cellsACS extract treatment to SCC-25 cells significantly modulated the gene expressions pertaining to apoptosis and propidium iodide and acridine orange/ethidium bromide staining also confirm the apoptosis inductionAntiproliferative and apoptosis inducing activities of ACS extract is correlated with phytochemical contents. Abbreviations used: ACS: Acacia catechu seed extract; MTT: 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; AO/EO: Acridine orange/ethidium bromide; LC MS: Liquid chromatography mass spectrometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA