Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS Pathog ; 20(4): e1012140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598600

RESUMO

The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.


Assuntos
Giardia lamblia , Giardiavirus , Giardia lamblia/ultraestrutura , Giardia lamblia/patogenicidade , Giardiavirus/genética , Microscopia Crioeletrônica , Animais , Capsídeo/ultraestrutura , Capsídeo/metabolismo , Humanos , Filogenia
2.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976254

RESUMO

Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a widespread gastrointestinal protozoan parasite with debated taxonomic status. Currently, eight distinct genetic sub-groups, termed assemblages A-H, are defined based on a few genetic markers. Assemblages A and B may represent distinct species and are both of human public health relevance. Genomic studies are scarce and the few reference genomes available, in particular for assemblage B, are insufficient for adequate comparative genomics. Here, by combining long- and short-read sequences generated by PacBio and Illumina sequencing technologies, we provide nine annotated genome sequences for reference from new clinical isolates (four assemblage A and five assemblage B parasite isolates). Isolates chosen represent the currently accepted classification of sub-assemblages AI, AII, BIII and BIV. Synteny over the whole genome was generally high, but we report chromosome-level translocations as a feature that distinguishes assemblage A from B parasites. Orthologue gene group analysis was used to define gene content differences between assemblage A and B and to contribute a gene-set-based operational definition of respective taxonomic units. Giardia is tetraploid, and high allelic sequence heterogeneity (ASH) for assemblage B vs. assemblage A has been observed so far. Noteworthy, here we report an extremely low ASH (0.002%) for one of the assemblage B isolates (a value even lower than the reference assemblage A isolate WB-C6). This challenges the view of low ASH being a notable feature that distinguishes assemblage A from B parasites, and low ASH allowed assembly of the most contiguous assemblage B genome currently available for reference. In conclusion, the description of nine highly contiguous genome assemblies of new isolates of G. duodenalis assemblage A and B adds to our understanding of the genomics and species population structure of this widespread zoonotic parasite.


Assuntos
Giardia lamblia , Giardíase , Humanos , Giardia lamblia/genética , Giardíase/parasitologia , Giardia/genética , Genômica
3.
Microorganisms ; 10(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35336093

RESUMO

Toxoplasma gondii is a major foodborne pathogen capable of infecting all warm-blooded animals, including humans. Although oocyst-associated toxoplasmosis outbreaks have been documented, the relevance of the environmental transmission route remains poorly investigated. Thus, we carried out an extensive systematic review on T. gondii oocyst contamination of soil, water, fresh produce, and mollusk bivalves, following the PRISMA guidelines. Studies published up to the end of 2020 were searched for in public databases and screened. The reference sections of the selected articles were examined to identify additional studies. A total of 102 out of 3201 articles were selected: 34 articles focused on soil, 40 focused on water, 23 focused on fresh produce (vegetables/fruits), and 21 focused on bivalve mollusks. Toxoplasma gondii oocysts were found in all matrices worldwide, with detection rates ranging from 0.09% (1/1109) to 100% (8/8) using bioassay or PCR-based detection methods. There was a high heterogeneity (I2 = 98.9%), which was influenced by both the sampling strategy (e.g., sampling site and sample type, sample composition, sample origin, season, number of samples, cat presence) and methodology (recovery and detection methods). Harmonized approaches are needed for the detection of T. gondii in different environmental matrices in order to obtain robust and comparable results.

4.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215282

RESUMO

This work describes the activity of 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and of its newly identified carboxylic acid metabolite on the human malaria parasite Plasmodium falciparum. NBDHEX has been previously identified as a potent cytotoxic agent against murine and human cancer cells as well as towards the protozoan parasite Giardia duodenalis. We show here that NBDHEX is active in vitro against all blood stages of P. falciparum, with the rare feature of killing the parasite stages transmissible to mosquitoes, the gametocytes, with a 4-fold higher potency than that on the pathogenic asexual stages. This activity importantly translates into blocking parasite transmission through the Anopheles vector in mosquito experimental infections. A mass spectrometry analysis identified covalent NBDHEX modifications in specific cysteine residues of five gametocyte proteins, possibly associated with its antiparasitic effect. The carboxylic acid metabolite of NBDHEX retains the gametocyte preferential inhibitory activity of the parent compound, making this novel P. falciparum transmission-blocking chemotype at least as a new tool to uncover biological processes targetable by gametocyte selective drugs. Both NBDHEX and its carboxylic acid metabolite show very limited in vitro cytotoxicity on VERO cells. This result and previous evidence that NBDHEX shows an excellent in vivo safety profile in mice and is orally active against human cancer xenografts make these molecules potential starting points to develop new P. falciparum transmission-blocking agents, enriching the repertoire of drugs needed to eliminate malaria.

5.
ISME Commun ; 2(1): 9, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938691

RESUMO

The symbiont-associated (SA) environmental package is a new extension to the minimum information about any (x) sequence (MIxS) standards, established by the Parasite Microbiome Project (PMP) consortium, in collaboration with the Genomics Standard Consortium. The SA was built upon the host-associated MIxS standard, but reflects the nestedness of symbiont-associated microbiota within and across host-symbiont-microbe interactions. This package is designed to facilitate the collection and reporting of a broad range of metadata information that apply to symbionts such as life history traits, association with one or multiple host organisms, or the nature of host-symbiont interactions along the mutualism-parasitism continuum. To better reflect the inherent nestedness of all biological systems, we present a novel feature that allows users to co-localize samples, to nest a package within another package, and to identify replicates. Adoption of the MIxS-SA and of the new terms will facilitate reports of complex sampling design from a myriad of environments.

6.
Food Microbiol ; 102: 103870, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809958

RESUMO

The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii can be transmitted to humans through shellfish consumption. No standardized methods are available for their detection in these foods, and the performance of the applied methods are rarely described in occurrence studies. Through spiking experiments, we characterized different performance criteria (e.g. sensitivity, estimated limit of detection (eLD95METH), parasite DNA recovery rates (DNA-RR)) of real-time qPCR based-methods for the detection of the three protozoa in mussel's tissues and hemolymph. Digestion of mussels tissues by trypsin instead of pepsin and the use of large buffer volumes was the most efficient for processing 50g-sample. Trypsin digestion followed by lipids removal and DNA extraction by thermal shocks and a BOOM-based technique performed poorly (e.g. eLD95METH from 30 to >3000 parasites/g). But trypsin digestion and direct DNA extraction by bead-beating and FastPrep homogenizer achieved higher performance (e.g. eLD95METH: 4-400 parasites/g, DNA-RR: 19-80%). Direct DNA recovery from concentrated hemolymph, by thermal shocks and cell lysis products removal was not efficient to sensitively detect the protozoa (e.g. eLD95METH: 10-1000 parasites/ml, DNA-RR ≤ 24%). The bead-beating DNA extraction based method is a rapid and simple approach to sensitively detect the three protozoa in mussels using tissues, that can be standardized to different food matrices. However, quantification in mussels remains an issue.


Assuntos
Cryptosporidium parvum , DNA de Protozoário/isolamento & purificação , Giardia lamblia , Mytilus edulis , Toxoplasma , Animais , Cryptosporidium parvum/genética , DNA de Protozoário/genética , Giardia lamblia/genética , Hemolinfa , Mytilus edulis/parasitologia , Alimentos Marinhos/parasitologia , Toxoplasma/genética , Tripsina
7.
Biomedicines ; 9(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201207

RESUMO

Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.

8.
Microorganisms ; 9(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451081

RESUMO

Human infection with the important zoonotic foodborne pathogen Toxoplasma gondii has been associated with unwashed raw fresh produce consumption. The lack of a standardised detection method limits the estimation of fresh produce as an infection source. To support method development and standardisation, an extensive literature review and a multi-attribute assessment were performed to analyse the key aspects of published methods for the detection of T. gondii oocyst contamination in fresh produce. Seventy-seven published studies were included, with 14 focusing on fresh produce. Information gathered from expert laboratories via an online questionnaire were also included. Our findings show that procedures for oocyst recovery from fresh produce mostly involved sample washing and pelleting of the washing eluate by centrifugation, although washing procedures and buffers varied. DNA extraction procedures including mechanical or thermal shocks were identified as necessary steps to break the robust oocyst wall. The most suitable DNA detection protocols rely on qPCR, mostly targeting the B1 gene or the 529 bp repetitive element. When reported, validation data for the different detection methods were not comparable and none of the methods were supported by an interlaboratory comparative study. The results of this review will pave the way for an ongoing development of a widely applicable standard operating procedure.

9.
Virol J ; 17(1): 142, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993724

RESUMO

Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.


Assuntos
Interações Hospedeiro-Parasita , Terapia Viral Oncolítica/métodos , Parasitos/virologia , Doenças Parasitárias/terapia , Terapia por Fagos/métodos , Animais , Humanos , Terapia Viral Oncolítica/normas , Terapia por Fagos/normas
10.
Exp Parasitol ; 214: 107900, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335103

RESUMO

Foodborne parasites (FBP) are recognized as being a neglected pathogen group, often associated with marginalized or disadvantaged populations, especially those living in regions where water supply or sanitation are inadequate. Nevertheless, we are also increasingly recognising that FBP are not just restricted to such places, and even those that do have a circumscribed endemic area may also travel further in our globalised world; FBP are relevant everywhere, including Europe. Against this background, COST Action Euro-FBP (FA1408) was established and ran for a period of 4 years, addressing a number of different questions related to FBP, particularly in the European setting. In this special issue (SI), some of the issues and outputs associated with Euro-FBP are considered in greater depth, as an output also of the final Euro-FBP meeting. As well as more general issues regarding, for example, globalization and climate change, use of economic models, and the value of risk-based surveillance that puts the topic in perspective, individual articles are included that address specific parasites. These include protozoan parasites, such as Cryptosporidium, Giardia, and Toxoplasma, as contaminants of water, shellfish, and fresh produce, fishborne parasites such as Anisakid nematodes, and meatborne parasites, such as Trichinella. Some of the works provide specific data on occurrence or outbreaks, whilst others are concerned with techniques. In addition, implementation of some of the educational and collaborative tools that are unique to COST Actions are described. COST Actions are not generally intended to deliver a scientific endpoint, and Euro-FBP does not do so. However, the articles in this SI, along with other articles published elsewhere during and subsequent to the course of the Action, as direct outputs of the Euro-FBP activities, indicate that FBP are indeed a relevant topic for European scientists.


Assuntos
Parasitologia de Alimentos , Doenças Transmitidas por Alimentos , Europa (Continente) , Doenças Transmitidas por Alimentos/diagnóstico , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/parasitologia
11.
Exp Parasitol ; 211: 107863, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32088148

RESUMO

Foodborne parasites with zoonotic potential are of particular concern for human health, being responsible for serious and potentially life threatening diseases. In the last decades, the development of molecular biology techniques have been successfully implemented for clinical diagnosis of FBPs in animal or human samples providing cheaper, less labor intensive, reliable and more sensitive tests. It is apparent from recent publications that unsubstantiated molecular methods for parasite detection that have undergone scant evaluation for sensitivity and specificity are becoming increasingly common. The aim of the organized Training Schools was to transfer knowledge on application, optimization and troubleshooting for methods used to extract, amplify, and sequence nucleic acids from contaminated matrices and isolated FBPs. The organized Training Schools fulfilled the trainees' expectations, whom acquired useful knowledge for their research activities.

12.
Exp Parasitol ; 208: 107809, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785242

RESUMO

The apicomplexan parasite Toxoplasma gondii can infect humans and cause toxoplasmosis. T. gondii has been highly prioritized among the foodborne parasites regarding its global impact on public health. Human infection can occur through multiple routes, including the ingestion of raw or undercooked food contaminated with T. gondii oocysts, such as fresh produce and bivalves. As filter-feeders, bivalves can accumulate and concentrate contaminants, including protozoan (oo)cysts. Although detection of T. gondii in different bivalves by molecular techniques (PCR and qPCR) has been achieved, routine application is currently limited by lack of sensitivity or equipment costs. Here, we describe the assessment of a loop-mediated isothermal amplification (LAMP)-based assay to detect T. gondii oocysts in spiked mussels. Detection limit was down to 5 oocysts/g in tissue and 5 oocyst/ml in hemolymph, and, under the experimental conditions tested, LAMP was found to provide a promising alternative to qPCR.


Assuntos
Bivalves/parasitologia , DNA de Protozoário/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Toxoplasma/genética , Animais , Eletroforese em Gel de Ágar , Doenças Transmitidas por Alimentos/parasitologia , Hemolinfa/parasitologia , Sensibilidade e Especificidade , Toxoplasma/isolamento & purificação , Toxoplasmose/parasitologia , Toxoplasmose/transmissão
13.
Cells ; 8(12)2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835439

RESUMO

: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Giardia lamblia/metabolismo , Animais , Western Blotting , Difusão Dinâmica da Luz , Exossomos/ultraestrutura , Giardia lamblia/ultraestrutura , Microscopia Eletrônica
14.
Adv Parasitol ; 106: 51-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31630760

RESUMO

Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.


Assuntos
Proteínas 14-3-3/metabolismo , Giardia/metabolismo , Giardíase/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Giardia/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
15.
Exp Parasitol ; 207: 107776, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31628895

RESUMO

The availability of high quality genomic DNA in sufficient amounts to perform Next Generation Sequencing (NGS) experiments is challenging for pathogens that cannot be cultivated in vitro, as is the case for many parasites. Therefore, Whole Genome Amplification (WGA) of genomic DNA is used to overcome this limitation. In this study, we evaluated the effect of WGA using the intestinal flagellated protozoan Giardia duodenalis as a model, due to its genome compactness (12 Mb), the presence of two diploid nuclei with variable levels of allelic sequence heterogeneity (ASH), and the availability of reference genomes. We selected one isolate (ZX15) belonging to the same genetic group of the reference isolate WB, namely Assemblage A, sub-Assemblage AI. Genomic DNA from the ZX15 isolate (GEN dataset) and that obtained by WGA of 1 ng of the same genomic DNA (WGA dataset) were sequenced on a HiSeq Illumina platform. Trimmed reads from the GEN and WGA experiments were mapped against the WB reference genome, showing the presence of a very small number of mutations (846 and 752, respectively). The difference in the number of mutations is largely accounted by local variation in coverage and not by bias introduced by WGA. No significant difference were observed in the distribution of mutations in coding and non-coding regions, in the proportion of heterozygous mutations (ASH), or in the transition/transversion ratio of Single Nucleotide Variants within coding sequences. We conclude that the quantitative and qualitative impact of WGA on the identification of mutations is limited, and that this technique can be used to conduct comparative genomics studies.


Assuntos
DNA de Protozoário/genética , Giardia lamblia/genética , Giardíase/parasitologia , Pré-Escolar , Biologia Computacional , República Tcheca , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Feminino , Estudo de Associação Genômica Ampla , Variação Estrutural do Genoma , Humanos , Mutação , Técnicas de Amplificação de Ácido Nucleico , Fases de Leitura Aberta/genética
16.
PLoS One ; 14(3): e0213385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845190

RESUMO

The effects on Giardia duodenalis of Slab51 probiotic supernatants were evaluated in vitro and ex vivo. In vitro, Slab51 (101 UFC) was cultured and the obtained supernatant was filtered, adjusted at pH 7, and added (100µl/ml) as such (Slab51 FS) or after heat-treatment, to G. duodenalis cultures to evaluate its effects on G. duodenalis trophozoites growth and adherence. For comparison, negative and metronidazole (20µg/ml) treated controls were used. The morphological and ultrastructural alterations of G. duodenals trophozoites following treatment with Slab51 FS supernatant were investigated by transmission electron microscopy. Ex vivo, mice duodenal portions were cultivated in standard conditions with 5x105 G. duodenalis trophozoites/ml, while to further five duodenal portions similarly cultured and infected, Slab51 FS 200µl was added. After 12 and 18h, samples were fixed in 10% buffered formalin and histologically processed to score Giardia infection and cell damage. Cell proliferation/apoptosis was scored by Ki67, TUNEL and Caspase-3 tests. All experiments were conducted in triplicate throughout the study. All data were statistically evaluated (P< 0.05). Results showed that Slab51 FS significantly reduced Giardia growth and adherence respect to negative controls, but its efficacy was overall lower than that of metronidazole. Moreover, the effects of Slab51 FS were significantly lowered by heat-treatment and this reduction was statistically higher at 90°C than at 56°C, indicating a heat-sensitive nature of active Slab51 FS compounds. At the ultrastructural level, Slab51 FS treated Giardia trophozoites were swelling, increased in size and showed alterations of their cellular membrane and vacuole patterns, loss of the nuclear envelope and nuclear architecture. In ex vivo trials, viable G. duodenalis trophozoites and enterocyte TUNEL+ and Caspase-3 expression were significantly reduced in intestinal sections added with Slab51 FS, while enterocyte Ki67 expression was significantly increased, confirming the anti-G. duodenalis activity of Slab51 FS observed in vitro. In conclusion, results from this study showed that the fresh culture supernatant of the commercial probiotic Slab51 has anti-G. duodenalis properties both in vitro and ex vivo in a mouse model.


Assuntos
Giardia lamblia/efeitos dos fármacos , Giardíase/tratamento farmacológico , Probióticos/farmacologia , Trofozoítos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Duodeno/parasitologia , Giardíase/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos ICR
18.
Infect Drug Resist ; 11: 1921-1933, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498364

RESUMO

Giardia is the commonest parasitic diarrheal pathogen affecting humans and a frequent cause of waterborne/foodborne parasitic diseases worldwide. Prevalence of giardiasis is higher in children, living in poor, low hygiene settings in developing countries, and in travelers returning from highly endemic areas. The clinical picture of giardiasis is heterogeneous, with high variability in severity of clinical disease. It can become chronic or be followed by post-infectious sequelae. An alarming increase in cases refractory to the conventional treatment with nitroimidazoles (ie, metronidazole) has been reported in low prevalence settings, such as European Union countries, especially in patients returning from Asia. In view of its relevance, we aim in this review to recapitulate present clinical knowledge about Giardia, with a special focus on the challenge of treatment-refractory giardiasis. We propose a working definition of clinically drug-resistant giardiasis, summarize knowledge regarding resistance mechanisms, and discuss its clinical management according to research-based evidence and medical practice. Advances in development and identification of novel drugs and potential non-pharmacological alternatives are also reviewed with the overall aim to define knowledge gaps and suggest future directions for research.

19.
Food Microbiol ; 70: 137-142, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29173620

RESUMO

The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a foodborne zoonosis with a global distribution and estimated to cause up to 20% of the total foodborne disease burden in Europe. Association between T. gondii infection and the consumption of unwashed raw fruits and vegetables contaminated with oocysts has been reported and the increasing habit to eat pre-washed ready-to-eat salads poses a new potential risk for consumers. It is therefore important to trace the occurrence of potential contamination with this parasite to guarantee the safety of ready-to-eat vegetables. Detection of T. gondii in vegetables by molecular techniques has been achieved but low sensitivity (PCR) or expensive equipments (qPCR) limit routine applicability. Here, we describe the development and validation of a sensitive and robust method relying on a LAMP assay, targeting the 529 bp locus, to detect T. gondii oocysts down to 25 oocysts/50 g in ready-to-eat baby lettuce. The LAMP has been also adapted for a faster visualization of the result by a lateral flow dipstick chromatographic detection method.


Assuntos
Fast Foods/parasitologia , Contaminação de Alimentos/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Oocistos/isolamento & purificação , Toxoplasma/isolamento & purificação , Verduras/parasitologia , Oocistos/genética , Oocistos/crescimento & desenvolvimento , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
20.
Infect Genet Evol ; 66: 335-345, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29225147

RESUMO

Giardia duodenalis is a unicellular flagellated parasite that infects the gastrointestinal tract of a wide range of mammalian species, including humans. Investigations of protein and DNA polymorphisms revealed that G. duodenalis should be considered as a species complex, whose members, despite being morphologically indistinguishable, can be classified into eight groups, or Assemblages, separated by large genetic distances. Assemblages display various degree of host specificity, with Assemblages A and B occurring in humans and many other hosts, Assemblage C and D in canids, Assemblage E in hoofed animals, Assemblage F in cats, Assemblage G in rodents, and Assemblage H in pinnipeds. The factors determining host specificity are only partially understood, and clearly involve both the host and the parasite. Here, we review the results of in vitro and in vivo experiments, and clinical observations to highlight relevant biological and genetic differences between Assemblages, with a focus on human infection.


Assuntos
Giardia lamblia/classificação , Giardia lamblia/fisiologia , Giardíase/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Animais , Biodiversidade , Genoma de Protozoário , Genômica/métodos , Giardíase/metabolismo , Giardíase/transmissão , Interações Hospedeiro-Patógeno/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA