Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32333, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947433

RESUMO

In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.

3.
RSC Adv ; 11(5): 2804-2837, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424248

RESUMO

Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA