Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229479

RESUMO

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Assuntos
Rim/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Néfrons/metabolismo , Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Transporte de Íons , Rim/citologia , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/genética
2.
Brain Res ; 1714: 227-233, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30876859

RESUMO

Environmental enrichment (EE) and amantadine (AMT) enhance motor and cognitive outcome after experimental traumatic brain injury (TBI). However, there are no data on the effects of combining these two therapies. Hence, the aim of the current study was to combine EE and AMT after TBI to determine if their net effect further enhances motor and cognitive performance. Anesthetized adult male rats received either a cortical impact of moderate severity or sham injury and then were randomly assigned to EE or standard (STD) housing and once daily administration of AMT (20 mg/kg; i.p.) or saline vehicle (VEH, 1 mL/kg; i.p.) beginning 24 h after injury for 19 days. Motor and cognitive function were assessed on post-surgical days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 21. There were no statistical differences among the sham groups regardless of therapy, so the data were pooled. EE, AMT, and their combination (EE + AMT) improved beam-balance, but only EE and EE + AMT enhanced beam-walking. All three treatment paradigms improved spatial learning and memory relative to the VEH-treated STD controls (p < 0.05). No differences were revealed between the EE groups, regardless of treatment, but both were better than the AMT-treated STD group on beam-walking and spatial learning (p < 0.05). Both EE groups equally reduced cortical lesion volume relative to the STD-housed AMT and VEH groups (p < 0.05). The results indicate that although beneficial on their own, EE + AMT do not provide additional benefits after TBI. It is important to note that the lack of additive effects using the current treatment and behavioral protocols does not detract from the benefits of each individual therapy. The findings provide insight for future combination studies.


Assuntos
Amantadina/farmacologia , Atividade Motora/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Amantadina/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Cognição/fisiologia , Modelos Animais de Doenças , Meio Ambiente , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Neurosci Lett ; 694: 69-73, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30472358

RESUMO

Numerous pharmacotherapies have been evaluated after experimental traumatic brain injury (TBI). While amantadine (AMT) has shown potential for clinical efficacy, the few studies on its effectiveness have been mixed. It is possible that suboptimal dosing, due to the evaluation of only one dose, may be causing the discrepancies in outcomes. Hence, the goal of the current study was to conduct a dose response of AMT after TBI to determine an optimal behavioral benefit. Anesthetized adult male rats received either a cortical impact of moderate severity or sham injury and then were randomly assigned to receive once daily intraperitoneally injections of AMT (10, 20, or 40 mg/kg) or saline vehicle (VEH, 1 mL/kg) commencing 24 h after injury for 19 days. Motor and cognitive function were assessed on post-operative days 1-5 and 14-19, respectively. There were no statistical differences among the sham groups treated with AMT or VEH so the data were pooled. AMT (20 mg/kg) facilitated beam-balance recovery and spatial learning relative to VEH-treated controls (p < 0.05). No other doses of AMT were effective. These results indicate that dosing should be carefully considered when assessing the effects of pharmacotherapies after TBI so that potential benefits are not inadvertently missed.


Assuntos
Amantadina/administração & dosagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Dopaminérgicos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Ratos Sprague-Dawley , Aprendizagem Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA