Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 13(1): 5643, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163138

RESUMO

Intracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material properties of these condensates are determined by a balance between attractive and repulsive forces mediated by a helical oligomerization domain and an expanded disordered region, respectively. A series of PopZ mutants disrupting this balance results in condensates that span the material properties spectrum, from liquid to solid. A narrow range of condensate material properties supports proper cell division, linking emergent properties to organismal fitness. We use these insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in human cells.


Assuntos
Caulobacter crescentus , Proteínas Intrinsicamente Desordenadas , Proteínas de Bactérias/metabolismo , Condensados Biomoleculares , Caulobacter crescentus/metabolismo , Divisão Celular , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo
2.
Front Mol Biosci ; 8: 644133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368224

RESUMO

JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A's genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli's, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome's configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.

3.
Methods Mol Biol ; 2215: 49-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33367999

RESUMO

Cryo-electron tomography (cryo-ET) is a powerful technique to examine cellular structures as they exist in situ. However, direct imaging by TEM for cryo-ET is limited to specimens up to ∼400 nm in thickness, narrowing its applicability to areas such as cellular projections or small bacteria and viruses. Cryo-focused ion beam (cryo-FIB) milling has emerged in recent years as a method to generate thin specimens from cellular samples in preparation for cryo-ET. In this technique, specimens are thinned with a beam of gallium ions to gradually ablate cellular material in order to leave a thin, electron-transparent section (a lamella) through the bulk material. The lamella can be used for high-resolution cryo-ET to visualize cells in 3D in a near-native state. This approach has proved to be robust and relatively simple for new users and exhibits minimal sectioning artifacts. In this chapter, we describe a general approach to cryo-FIB milling for users with prior cryo-EM experience, with extensive notes on operation and troubleshooting.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Técnicas de Preparação Histocitológica/instrumentação , Amoeba/citologia , Animais , Bactérias/citologia , Fungos/citologia , Gálio/química , Células HeLa , Técnicas de Preparação Histocitológica/métodos , Humanos , Camundongos , Células NIH 3T3 , Fluxo de Trabalho
4.
Proc Natl Acad Sci U S A ; 115(52): E12378-E12387, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30552139

RESUMO

Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.


Assuntos
Fotorreceptores Microbianos/metabolismo , Fototaxia/fisiologia , Synechococcus/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fotorreceptores Microbianos/química , Synechococcus/fisiologia , Synechocystis/metabolismo
5.
J Am Soc Nephrol ; 26(2): 291-301, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205735

RESUMO

Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Recent clinical studies established that >70% of patients with idiopathic (also called primary) MN (IMN) possess circulating autoantibodies targeting the M-type phospholipase A2 receptor-1 (PLA2R) on the surface of glomerular visceral epithelial cells (podocytes). In situ, these autoantibodies trigger the formation of immune complexes, which are hypothesized to cause enhanced glomerular permeability to plasma proteins. Indeed, the level of autoantibody in circulation correlates with the severity of proteinuria in patients. The autoantibody only recognizes the nonreduced form of PLA2R, suggesting that disulfide bonds determine the antigenic epitope conformation. Here, we identified the immunodominant epitope region in PLA2R by probing isolated truncated PLA2R extracellular domains with sera from patients with IMN that contain anti-PLA2R autoantibodies. Patient sera specifically recognized a protein complex consisting of the cysteine-rich (CysR), fibronectin-like type II (FnII), and C-type lectin-like domain 1 (CTLD1) domains of PLA2R only under nonreducing conditions. Moreover, absence of either the CysR or CTLD1 domain prevented autoantibody recognition of the remaining domains. Additional analysis suggested that this three-domain complex contains at least one disulfide bond required for conformational configuration and autoantibody binding. Notably, the three-domain complex completely blocked the reactivity of autoantibodies from patient sera with the full-length PLA2R, and the reactivity of patient sera with the three-domain complex on immunoblots equaled the reactivity with full-length PLA2R. These results indicate that the immunodominant epitope in PLA2R is exclusively located in the CysR-FnII-CTLD1 region.


Assuntos
Autoanticorpos/imunologia , Glomerulonefrite Membranosa/imunologia , Epitopos Imunodominantes/imunologia , Receptores da Fosfolipase A2/imunologia , Autoanticorpos/sangue , Cisteína/imunologia , Fibronectinas/imunologia , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/patologia , Células HEK293 , Humanos , Epitopos Imunodominantes/química , Lectinas Tipo C/imunologia , Podócitos/imunologia , Podócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA