Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Basic Res Cardiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834767

RESUMO

Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon ß1 (IFNß1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.

2.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838142

RESUMO

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Assuntos
Replicação do DNA , Imunidade Inata , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Transdução de Sinais , Arginina/metabolismo , Arginina/análogos & derivados , Estresse Fisiológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dano ao DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Curr Probl Cardiol ; 49(8): 102618, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735349

RESUMO

BACKGROUND: Data on disparities in outcomes and risk factors in Asian patients with advanced chronic kidney disease admitted for heart failure are scare. METHODS: This was a retrospective cohort study that utilized data from the National Inpatient Sample between January 2016 and December 2019. Patients who had a primary diagnosis of acute decompensated heart failure and a concomitant diagnosis of advanced CKD were included. The primary outcome of interest was in-hospital mortality. Secondary outcomes include hospital cost, length of stay, and other clinical outcomes. Weighted multivariable logistic regression was used to adjust for comorbidities. RESULTS: There were 251,578 cases of ADHF with advanced CKD, out of which 2.6 % were from individuals of Asian ethnicity. Asian patients exhibited a higher burden of comorbidities in comparison to other UREM patients, but a lower burden than White patients. Regardless of differences in comorbidity burden, Asian patients exhibited a higher likelihood of experiencing severe consequences. After adjusting for comorbidies, White (OR:1.11; 95 % CI 1.03-1.20;0.009) patients had higher odds of mortality than Asian patients. However, Blacks (OR: 0.58; 95 % CI 0.53 to 0.63; p < 0.001) and Hispanics (OR: 0.69; 95 % CI 0.62 to 0.78; p < 0.001) had lower odds of mortality. CONCLUSION: This first population-based studies shows that Asian patients with advanced CKD admitted for ADHF have greater comorbidity burden and poorer outcomes Black and Hispanic patients. This data underscores the importance of comprehensive approaches in phenotyping, and ethnic specific interventions.

4.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612588

RESUMO

Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Síndromes Neurotóxicas , Humanos , Células Endoteliais , Adenocarcinoma de Pulmão/genética , Neoplasias Encefálicas/genética , Neoplasias Pulmonares/genética , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
5.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132121

RESUMO

In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Microbiota , Humanos , Células Estromais , Microambiente Tumoral
6.
Front Immunol ; 14: 1275890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936700

RESUMO

The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment.​.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Diagnóstico por Imagem , Linfócitos T CD8-Positivos , Processamento de Imagem Assistida por Computador
7.
Noncoding RNA ; 9(6)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37987361

RESUMO

Deregulated miRNAs are associated with colorectal cancer (CRC), with alterations depending on the tumor location. Novel tissue-specific miRNAs have been identified in different tumors and are associated with cancer. We used miRMaster to identify novel miRNAs in CRC from the TCGA and GEO data (discovery and validation groups). We used TCGA data from five tissues to analyze miRNA tissue specificity. miRDB was used to predict miRNA targets, and the UCSC Xena Browser was used to evaluate target expression. After successive analyses, we identified 15 novel miRNAs with the same expression patterns in CRC in both the discovery and validation groups. Four molecules (nov-miR-13844-5p, nov-miR-7154-5p, nov-miR-5035-3p, and nov-miR-590-5p) were differentially expressed in proximal and distal CRC. The nov-miR-3345-5p and nov-miR-13172-3p, which are upregulated in tumors, are only expressed in colorectal tissues. These molecules have been linked to a worse prognosis in right-sided colon and rectal carcinomas. An analysis revealed an association between eight novel miRNAs and 81 targets, mostly cancer-related genes, with varying expression based on tumor location. These findings provide new miRNAs with potential biological relevance, molecular biomarkers, and therapeutic targets for CRC treatment.

8.
EMBO Rep ; 24(12): e56815, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37846480

RESUMO

HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.


Assuntos
Ubiquitina-Proteína Ligases , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Cancers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760494

RESUMO

Lung tumors frequently metastasize to the brain. Brain metastasis (BM) is common in advanced cases, and a major cause of patient morbidity and mortality. The precise molecular mechanisms governing BM are still unclear, in part attributed to the rarity of BM specimens. In this work, we compile a unique transcriptomic dataset encompassing RNA-seq, microarray, and single-cell analyses from BM samples obtained from patients with lung adenocarcinoma (LUAD). By integrating this comprehensive dataset, we aimed to enhance understanding of the molecular landscape of BM, thereby facilitating the identification of novel and efficient treatment strategies. We identified 102 genes with significantly deregulated expression levels in BM tissues, and discovered transcriptional alterations affecting the key driver 'hub' genes CD69 (a type II C-lectin receptor) and GZMA (Granzyme A), indicating an important role of the immune system in the development of BM from primary LUAD. Our study demonstrated a BM-specific gene expression pattern and revealed the presence of dendritic cells and neutrophils in BM, suggesting an immunosuppressive tumor microenvironment. These findings highlight key drivers of LUAD-BM that may yield therapeutic targets to improve patient outcomes.

10.
Res Sq ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461679

RESUMO

Background : Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. Results : Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, but reassuringly were robust to placental processing time. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. Conclusions : This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. Further, we demonstrate that estimating epiphenotype variables from the DNAme data itself, when possible, provides both an independent check of clinically-obtained data and can provide a robust approach to compare variables across different datasets.

11.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
12.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240238

RESUMO

Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia , Biópsia Líquida/métodos , Neoplasias Pulmonares/diagnóstico , Biópsia/métodos , Células Neoplásicas Circulantes/patologia
13.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190212

RESUMO

Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.

14.
Respir Res ; 24(1): 124, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143066

RESUMO

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Disbiose/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Epitélio , Infecções por HIV/epidemiologia , Infecções por HIV/genética
15.
BMC Oral Health ; 23(1): 206, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024828

RESUMO

A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with outcome data are required to establish relevant associations between the microbiota and disease. The objective of this study was to characterize the community variations and the functional implications of the microbiome in low-grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing (P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples - 30 swabs from low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly by the number of years between sampling and progression or in specific time to progression for Ps only. However, these differentially abundant features were typically present only at low abundances. For example, Campylobacter was present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore the microbiome as a potential biomarker of risk in OED are warranted.


Assuntos
Microbiota , Neoplasias Bucais , Estudos de Coortes , Humanos , Criança , RNA Ribossômico 16S/genética , Microbiota/genética , Masculino , Feminino , Lactente , Pré-Escolar
16.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769181

RESUMO

Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Fumar/efeitos adversos , Fumar/metabolismo , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Pulmão/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Comorbidade , Microambiente Tumoral
17.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765679

RESUMO

Lung cancer is one of the most frequent tumors that metastasize to the brain. Brain metastasis (BM) is common in advanced cases, being the major cause of patient morbidity and mortality. BMs are thought to arise via the seeding of circulating tumor cells into the brain microvasculature. In brain tissue, the interaction with immune cells promotes a microenvironment favorable to the growth of cancer cells. Despite multimodal treatments and advances in systemic therapies, lung cancer patients still have poor prognoses. Therefore, there is an urgent need to identify the molecular drivers of BM and clinically applicable biomarkers in order to improve disease outcomes and patient survival. The goal of this review is to summarize the current state of knowledge on the mechanisms of the metastatic spread of lung cancer to the brain and how the metastatic spread is influenced by the brain microenvironment, and to elucidate the molecular determinants of brain metastasis regarding the role of genomic and transcriptomic changes, including coding and non-coding RNAs. We also present an overview of the current therapeutics and novel treatment strategies for patients diagnosed with BM from NSCLC.

18.
Curr Res Immunol ; 3: 222-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118267

RESUMO

Nasopharyngeal carcinoma (NPC) is unique among head and neck cancers for its strong causative association with Epstein Barr-Virus and high levels of immune infiltration that play a role in pathogenesis. As such, immunotherapy for the treatment of NPC is a promising area of research in the pursuit of improving patient outcomes. Understanding the tumour immune microenvironment (TIME) of NPC is the key to developing targeted immunotherapies and stratifying patients to determine optimal treatment regimens. Recent research has uncovered distinct characteristics of the TIME in NPC as well as important differences between the different disease subtypes; however, reviewing the state of the field reveals a further need for the application of novel techniques like multiplexed hyperspectral imaging and mass cytometry. These techniques can be used to identify spatial, compositional, and functional aspects of the TIME in NPC such as immune cell sociology, novel immune populations, and differences in immune-related signalling pathways in NPC in order to identify clinically relevant characteristics for targeted immunotherapy development and biomarker discovery.

19.
EBioMedicine ; 83: 104206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944348

RESUMO

BACKGROUND: Age-related comorbidities such as chronic obstructive pulmonary disease (COPD) are common in people living with human immunodeficiency virus (PLWH). We investigated the relationship between COPD and the epigenetic age of the airway epithelium and peripheral blood of PLWH. METHODS: Airway epithelial brushings from 34 PLWH enrolled in the St. Paul's Hospital HIV Bronchoscopy cohort and peripheral blood from 378 PLWH enrolled in The Strategic Timing of Antiretroviral Treatment (START) study were profiled for DNA methylation. The DNA methylation biomarker of age and healthspan, GrimAge, was calculated in both tissue compartments. We tested the association of GrimAge with COPD in the airway epithelium and airflow obstruction as defined by an FEV1/FVC<0.70, and FEV1 decline over 6 years in blood. FINDINGS: The airway epithelium of PLWH with COPD was associated with greater GrimAge residuals compared to PLWH without COPD (Beta=3.18, 95%CI=1.06-5.31, P=0.005). In blood, FEV1/FVC

Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Envelhecimento/genética , Biomarcadores , Colúmbia Britânica , Estudos de Coortes , Epigênese Genética , Infecções por HIV/complicações , Infecções por HIV/genética , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética
20.
Res Dev Disabil ; 129: 104305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868200

RESUMO

The present study examined whether prior knowledge to the learning target and imitation during learning affected learning outcomes in preschool children with autism spectrum disorder (ASD, N = 22) compared to their typically developing (TD, N = 15) peers. Children's gestural skills in recognizing and producing the target gestures before and after the training, as well as their imitative behavior during the training were coded. Results showed that consistent prior knowledge benefited gestural learning in both groups. Besides, only children with ASD were hindered by inconsistent prior knowledge. Notably, the effect of imitation was not significant in the ASD group. In conclusion, the learning process in children with ASD may differ from those with typical development, suggesting special-designed interventions are required.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Pré-Escolar , Gestos , Humanos , Comportamento Imitativo , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA