Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298357

RESUMO

Calpain-3 (CAPN3) is a muscle-specific member of the calpain family of Ca2+-dependent proteases. It has been reported that CAPN3 can also be autolytically activated by Na+ ions in the absence of Ca2+, although this was only shown under non-physiological ionic conditions. Here we confirm that CAPN3 does undergo autolysis in the presence of high [Na+], but this only occurred if all K+ normally present in a muscle cell was absent, and it did not occur even in 36 mM Na+, higher than what would ever be reached in exercising muscle if normal [K+] was present. CAPN3 in human muscle homogenates was autolytically activated by Ca2+, with ~50% CAPN3 autolysing in 60 min in the presence of 2 µM Ca2+. In comparison, autolytic activation of CAPN1 required about 5-fold higher [Ca2+] in the same conditions and tissue. After it was autolysed, CAPN3 unbound from its tight binding on titin and became diffusible, but only if the autolysis led to complete removal of the IS1 inhibitory peptide within CAPN3, reducing the C-terminal fragment to 55 kDa. Contrary to a previous report, activation of CAPN3, either by raised [Ca2+] or Na+ treatment, did not cause proteolysis of the skeletal muscle Ca2+ release channel-ryanodine receptor, RyR1, in physiological ionic conditions. Treatment of human muscle homogenates with high [Ca2+] caused autolytic activation of CAPN1, accompanied by proteolysis of some titin and complete proteolysis of junctophilin (JP1, full length ~95 kDa), generating an equimolar amount of a diffusible ~75 kDa N-terminal JP1 fragment, but without any proteolysis of RyR1.


Assuntos
Calpaína , Peptídeo Hidrolases , Humanos , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Calpaína/metabolismo , Conectina/metabolismo , Músculo Esquelético/metabolismo , Peptídeo Hidrolases/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sódio/metabolismo
2.
Acta Physiol (Oxf) ; 233(3): e13730, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492163

RESUMO

AIM: Subcellular fractionation is often used to determine the subcellular localization of proteins, including whether a protein translocates to the nucleus in response to a given stimulus. Examining nuclear proteins in skeletal muscle is difficult because myonuclear proteins are challenging to isolate unless harsh treatments are used. This study aimed to determine the most effective method for isolating and preserving proteins in their native state in skeletal muscle. METHODS: We compared the ability of detergents, commercially available kit-based and K+ -based physiological methodologies for isolating myonuclear proteins from resting samples of human muscle by determining the presence of marker proteins for each fraction by western blot analyses. RESULTS: We found that following the initial pelleting of nuclei, treatment with 1% Triton-X 100, 1% CHAPS or 0.5% Na-deoxycholate under various ionic conditions resulted in the nuclear proteins being either resistant to isolation or the proteins present behaving aberrantly. The nuclear proteins in brain tissue were also resistant to 1% Triton-X 100 isolation. Here, we demonstrate aberrant behaviour and erroneous localization of proteins using the kit-based method. The aberrant behaviour was the activation of Ca2+ -dependent protease calpain-3, and the erroneous localization was the presence of calpain-3 and troponin I in the nuclear fraction. CONCLUSION: Our findings indicate that it may not be possible to reliably determine the translocation of proteins between subcellular locations and the nucleus using subcellular fractionation techniques. This study highlights the importance of validating subcellular fractionation methodologies using several subcellular-specific markers and solutions that are physiologically relevant to the intracellular milieu.


Assuntos
Núcleo Celular , Músculo Esquelético , Encéfalo , Humanos , Proteínas Nucleares
3.
J Appl Physiol (1985) ; 130(3): 545-561, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356984

RESUMO

Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels. The levels of phosphorylated HSP27 (pHSP27-Ser15) and cytoskeletal proteins in muscle and creatine kinase activity in serum were also assessed. The exercise increased (P ≤ 0.05) pHSP27-Ser15 (∼6-fold) and creatine kinase (∼50%), whereas cytoskeletal protein levels were unchanged (P > 0.05). Ankrd 1 (∼15-fold) and MLP (∼2-fold) mRNA increased, whereas Ankrd 2, Ankrd 23, MuRF-1, MyoD1, and myostatin mRNA were unchanged. Ankrd 1 (∼3-fold, Ex) and MLPb (∼20-fold, Ex + Meal) protein increased, but MLPa, Ankrd 2, Ankrd 23, and the myogenic proteins were unchanged. The postexercise meal did not affect the responses observed. Power resistance exercise, as performed in practice, induced subtle early responses in the expression of MLP and Ankrd 1 yet had little effect on the other proteins investigated. These findings suggest possible roles for MLP and Ankrd 1 in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.NEW & NOTEWORTHY This is the first study to assess the early changes in the expression of titin-linked putative mechanosensing proteins and associated myogenic regulatory factors in skeletal muscle after power resistance exercise in fed, resistance-trained men. We report that power resistance exercise induces subtle early responses in the expression of Ankrd 1 and MLP, suggesting these proteins play a role in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.


Assuntos
Treinamento Resistido , Conectina , Exercício Físico , Humanos , Masculino , Músculo Esquelético , Miogenina
4.
Life Sci ; 260: 118234, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791148

RESUMO

AIMS: Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS: The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS: The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 µM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 µM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 µM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE: The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.


Assuntos
Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/química , Animais , Biomimética , Cálcio/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Miocárdio/ultraestrutura , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpião , Ovinos
5.
Am J Physiol Cell Physiol ; 318(6): C1083-C1091, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208990

RESUMO

Duchenne muscular dystrophy (DMD) is a severe, progressive muscle-wasting disorder that leads to early death. The mdx mouse is a naturally occurring mutant model for DMD. It lacks dystrophin and displays peak muscle cell necrosis at ~28 days (D28), but in contrast to DMD, mdx mice experience muscle regeneration by D70. We hypothesized that matrix metalloproteinase-2 (MMP2) and/or MMP9 play key roles in the degeneration/regeneration phases in mdx mice. MMP2 abundance in muscle homogenates, measured by calibrated Western blotting, and activity, measured by zymogram, were lower at D70 compared with D28 in both mdx and wild-type (WT) mice. Importantly, MMP2 abundance was higher in both D28 and D70 mdx mice than in age-matched WT mice. The higher MMP2 abundance was not due to infiltrating macrophages, because MMP2 content was still higher in isolated muscle fibers where most macrophages had been removed. Prenatal supplementation with the amino acid taurine, which improved muscle strength in D28 mdx mice, produced approximately twofold lower MMP2 activity, indicating that increased MMP2 abundance is not required when muscle damage is attenuated. There was no difference in MMP9 abundance between age-matched WT and mdx mice (P > 0.05). WT mice displayed decreased MMP9 abundance as they aged. While MMP9 may have a role during age-related skeletal muscle growth, it does not appear essential for degeneration/regeneration cycles in the mdx mouse. Our findings indicate that MMP2 plays a more active role than MMP9 in the degenerative phases of muscle fibers in D28 mdx mice.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Distrofia Muscular de Duchenne/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal , Taurina/administração & dosagem , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Necrose , Gravidez , Fatores de Tempo , Regulação para Cima
6.
J Appl Physiol (1985) ; 128(5): 1207-1216, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213115

RESUMO

In vitro studies have shown that alterations in redox state can cause a range of opposing effects on the properties of the contractile apparatus in skeletal muscle fibers. To test whether and how redox changes occurring in vivo affect the contractile properties, vastus lateralis muscle fibers from seven healthy young adults were examined at rest (PRE) and following (POST) high-intensity intermittent cycling exercise. Individual mechanically skinned muscle fibers were exposed to heavily buffered solutions at progressively higher free [Ca2+] to determine their force-Ca2+ relationship. Following acute exercise, Ca2+ sensitivity was significantly decreased in type I fibers (by 0.06 pCa unit) but not in type II fibers (0.01 pCa unit). Specific force decreased after the exercise in type II fibers (-18%) but was unchanged in type I fibers. Treatment with the reducing agent dithiothreitol (DTT) caused a small decrease in Ca2+-sensitivity in type II fibers at PRE (by ∼0.014 pCa units) and a significantly larger decrease at POST (∼0.035 pCa units), indicating that the exercise had increased S-glutathionylation of fast troponin I. DTT treatment also increased specific force (by ∼4%), but only at POST. In contrast, DTT treatment had no effect on either parameter in type I fibers at either PRE or POST. In type I fibers, the decreased Ca2+ sensitivity was not due to reversible oxidative changes and may have contributed to a decrease in power production during vigorous exercises. In type II fibers, exercise-induced redox changes help counter the decline in Ca2+-sensitivity while causing a small decline in maximum force.NEW & NOTEWORTHY This study identified important cellular changes occurring in human skeletal muscle fibers following high-intensity intermittent exercise: 1) a decrease in contractile apparatus Ca2+ sensitivity in type I but not type II fibers, 2) a decrease in specific force only in type II muscle fibers, and 3) a redox-dependent increase in Ca2+ sensitivity occurring only in type II fibers, which would help maintain muscle performance by countering the normal metabolite-induced decline in Ca2+ sensitivity.


Assuntos
Treinamento Intervalado de Alta Intensidade , Cálcio , Humanos , Contração Muscular , Fibras Musculares de Contração Rápida , Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto Jovem
8.
J Muscle Res Cell Motil ; 41(2-3): 239-250, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31679105

RESUMO

This study investigated the effect of S-glutathionylation on passive force in skeletal muscle fibres, to determine whether activity-related redox reactions could modulate the passive force properties of muscle. Mechanically-skinned fibres were freshly obtained from human and rat muscle, setting sarcomere length (SL) by laser diffraction. Larger stretches were required to produce passive force in human fibres compared to rat fibres, but there were no fibre-type differences in either species. When fibres were exposed to glutathione disulfide (GSSG; 20 mM, 15 min) whilst stretched (at a SL where passive force reached ~ 20% of maximal Ca2+-activated force, denoted as SL20 % max), passive force was subsequently decreased at all SLs in both type I and type II fibres of rat and human (e.g., passive force at SL20 % max decreased by 12 to 25%). This decrease was fully reversed by subsequent reducing treatment with dithiothreitol (DTT; 10 mM for 10 min). If freshly skinned fibres were initially treated with DTT, there was an increase in passive force in type II fibres (by 10 ± 3% and 9 ± 2% in rat and human fibres, respectively), but not in type I fibres. These results indicate that (i) S-glutathionylation, presumably in titin, causes a decrease in passive force in skeletal muscle fibres, but the reduction is relatively smaller than that reported in cardiac muscle, (ii) in rested muscle in vivo, there appears to be some level of reversible oxidative modification, probably involving S-glutathionylation of titin, in type II fibres, but not in type I fibres.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteína S/metabolismo , Animais , Humanos , Ratos
9.
Am J Physiol Cell Physiol ; 317(3): C613-C625, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241984

RESUMO

A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 µM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.


Assuntos
Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/enzimologia , Sequência de Aminoácidos , Animais , Ativação Enzimática/fisiologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Contração Muscular/fisiologia , Ratos , Ratos Sprague-Dawley
10.
J Muscle Res Cell Motil ; 40(3-4): 343-351, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31175519

RESUMO

This study investigated the effects of fibre swelling on force production in rat and human skinned muscle fibres, using osmotic compression to reverse the fibre swelling. In mechanically-skinned fibres, the sarcolemma is removed but normal excitation-contraction coupling remains functional. Force responses in mechanically-skinned fibres were examined with and without osmotic compression by polyvinylpyrrolidone 40 kDa (PVP-40) or Dextran 500 kDa (dextran). Fibre diameter increased to 116 ± 2% (mean ± SEM) when rat skinned type II fibres were immersed in the standard intracellular solution, but remained close to the in situ size when 3% (mass/volume) PVP-40 or 4% Dextran were present. Myofibrillar Ca2+ sensitivity, as indicated by pCa50 (- log10[Ca2+] at half-maximal force), was increased in 4% Dextran (0.072 ± 0.007 pCa50 shift), but was not significantly changed in 3% PVP-40. Maximum Ca2+-activated force increased slightly to 103 ± 1% and 104 ± 1% in PVP-40 and Dextran, respectively. Both tetanic and depolarization-induced force responses in rat skinned type II fibres, elicited by electrical stimulation and ion substitution respectively, were increased by ~ 10 to 15% when the fibres were returned to their normal in situ diameter by addition of PVP-40 or Dextran. Interestingly, the potentiation of these force responses in PVP-40 was appreciably greater than could be explained by potentiation of myofibrillar function alone. These results indicate that muscle fibre swelling, as can occur with intense exercise, decreases evoked force responses by reducing both the Ca2+-sensitivity of the contractile apparatus properties and Ca2+ release from the sarcoplasmic reticulum.


Assuntos
Depressão/etiologia , Fadiga Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Adulto , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Adulto Jovem
11.
J Appl Physiol (1985) ; 125(4): 1105-1127, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024333

RESUMO

The mechanically skinned (or "peeled") skeletal muscle fiber technique is a highly versatile procedure that allows controlled examination of each of the steps in the excitation-contraction (EC)-coupling sequence in skeletal muscle fibers, starting with excitation/depolarization of the transverse tubular (T)-system through to Ca2+ release from sarcoplasmic reticulum (SR) and finally force development by the contractile apparatus. It can also show the overall response of the whole EC-coupling sequence together, such as in twitch and tetanic force responses. A major advantage over intact muscle fiber preparations is that it is possible to set and rapidly manipulate the "intracellular" conditions, allowing examination of the effects of key variables (e.g., intracellular pH, ATP levels, redox state, etc.) on each individual step in EC coupling. This Cores of Reproducibility in Physiology (CORP) article describes the rationale, procedures, and experimental details of the various ways in which the mechanically skinned fiber technique is used in our laboratory to examine the physiological mechanisms controlling Ca2+ release and contraction in skeletal muscle fibers and the aberrations and dysfunction occurring with exercise and disease.


Assuntos
Dissecação/métodos , Técnicas In Vitro , Contração Muscular , Fibras Musculares Esqueléticas , Animais , Cálcio/metabolismo , Humanos
12.
J Muscle Res Cell Motil ; 39(1-2): 1-16, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29948664

RESUMO

Laboratory rats are sedentary if housed in conditions where activity is limited. Changes in muscle characteristics with chronic inactivity were investigated by comparing sedentary rats with rats undertaking voluntary wheel running for either 6 or 12 weeks. EDL (type II fibers) and soleus (SOL) muscles (predominantly type I fibers) were examined. When measured within 1-2 h post-running, calcium sensitivity of the contractile apparatus was increased, but only in type II fibers. This increase disappeared when fibers were treated with DTT, indicative of oxidative regulation of the contractile apparatus, and was absent in fibers from rats that had ceased running 24 h prior to experiments. Specific force production was ~ 10 to 25% lower in muscle fibers of sedentary compared to active rats, and excitability of skinned fibers was decreased. Muscle glycogen content was ~ 30% lower and glycogen synthase content ~ 50% higher in SOL of sedentary rats, and in EDL glycogenin was 30% lower. Na+, K+-ATPase α1 subunit density was ~ 20% lower in both EDL and SOL in sedentary rats, and GAPDH content in SOL ~ 35% higher. There were no changes in content of the calcium handling proteins calsequestrin and SERCA, but the content of CSQ-like protein was increased in active rats (by ~ 20% in EDL and 60% in SOL). These findings show that voluntary exercise elicits an acute oxidation-induced increase in Ca2+ sensitivity in type II fibers, and also that there are substantial changes in skeletal muscle characteristics and biochemical processes in sedentary rats.


Assuntos
Cálcio/metabolismo , Glicogênio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
13.
Clin Exp Pharmacol Physiol ; 45(2): 146-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044613

RESUMO

The contractile properties of vastus lateralis muscle fibres were examined in prostate cancer (PrCa) patients undergoing androgen deprivation therapy (ADT) and in age- and activity-matched healthy male subjects (Control). Mechanically-skinned muscle fibres were exposed to a sequence of heavily Ca2+ -buffered solutions at progressively higher free [Ca2+ ] to determine their force-Ca2+ relationship. Ca2+ -sensitivity was decreased in both type I and type II muscle fibres of ADT subjects relative to Controls (by -0.05 and -0.04 pCa units, respectively, P < .02), and specific force was around 13% lower in type I fibres of ADT subjects than in Controls (P = .02), whereas there was no significant difference in type II fibres. Treatment with the reducing agent dithiothreitol slightly increased specific force in type I and type II fibres of ADT subjects (by ~2%-3%, P < .05) but not in Controls. Pure type IIx fibres were found frequently in muscle from ADT subjects but not in Controls, and the overall percentage of myosin heavy chain IIx in muscle samples was 2.5 times higher in ADT subjects (P < .01). The findings suggest that testosterone suppression can negatively impact the contractile properties by (i) reducing Ca2+ -sensitivity in both type I and type II fibres and (ii) reducing maximum specific force in type I fibres.


Assuntos
Gosserrelina/uso terapêutico , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Idoso , Antagonistas de Androgênios , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino
14.
J Muscle Res Cell Motil ; 38(5-6): 405-420, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29185184

RESUMO

Laboratory rats are considered mature at 3 months despite that musculoskeletal growth is still occurring. Changes in muscle physiological and biochemical characteristics during development from 3 months, however, are not well understood. Whole muscles and single skinned fibres from fast-twitch extensor digitorum longus (EDL) and predominantly slow-twitch soleus (SOL) muscles were examined from male Sprague-Dawley rats (3, 6, 9, 12 months). Ca2+ sensitivity of contractile apparatus decreased with age in both fast- (~ 0.04 pCa units) and slow-twitch (~ 0.07 pCa units) muscle fibres, and specific force increased (by ~ 50% and ~ 25%, respectively). Myosin heavy chain composition of EDL and SOL muscles altered to a small extent with age (decrease in MHCIIa proportion after 3 months). Glycogen content increased with age (~ 80% in EDL and 25% in SOL) and GLUT4 protein density decreased (~ 35 and 20%, respectively), whereas the glycogen-related enzymes were little changed. GAPDH protein content was relatively constant in both muscle types, but COXIV protein decreased ~ 40% in SOL muscle. Calsequestrin (CSQ) and SERCA densities remained relatively constant with age, whereas there was a progressive ~ 2-3 fold increase in CSQ-like proteins, though their role and importance remain unclear. There was also ~ 40% decrease in the density of the Na+, K+-ATPase (NKA) α1 subunit in EDL and the α2 subunit in SOL. These findings emphasise there are substantial changes in skeletal muscle function and the density of key proteins during early to mid-adulthood in rats, which need to be considered in the design and interpretation of experiments.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Animais , Cálcio/metabolismo , Glicogênio/metabolismo , Masculino , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Ratos , Ratos Sprague-Dawley
16.
Am J Physiol Cell Physiol ; 313(3): C327-C339, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615162

RESUMO

Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule.


Assuntos
Repetição de Anquirina/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
17.
Am J Physiol Cell Physiol ; 311(1): C35-42, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099349

RESUMO

The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and ß-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total ß2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, ß2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate ß2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of ß2-AMPK in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Glicogênio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/enzimologia , Acetil-CoA Carboxilase/metabolismo , Animais , Estimulação Elétrica , Técnicas In Vitro , Masculino , Fosforilação , Ligação Proteica , Subunidades Proteicas , Ratos Sprague-Dawley , Treonina , Fatores de Tempo
18.
J Appl Physiol (1985) ; 116(11): 1463-72, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24699855

RESUMO

Small heat shock proteins (sHSPs) are a subgroup of the highly conserved family of HSPs that are stress inducible and confer resistance to cellular stress and injury. This study aimed to quantitatively examine whether type of contraction (concentric or eccentric) affects sHSPs, HSP27 and αB-crystallin, localization, and phosphorylation in human muscle. Vastus lateralis muscle biopsies from 11 healthy male volunteers were obtained pre- and 3 h, 24 h, and 7 days following concentric (CONC), eccentric (ECC1), and repeated bout eccentric (ECC2) exercise. No changes were apparent in a control group (n = 5) who performed no exercise. Eccentric exercise induced muscle damage, as evidenced by increased muscle force loss, perceived muscle soreness, and elevated plasma creatine kinase and myoglobin levels. Total HSP27 and αB-crystallin amounts did not change following any type of exercise. Following eccentric exercise (ECC1 and ECC2) phosphorylation of HSP27 at serine 15 (pHSP27-Ser15) was increased approximately 3- to 6-fold at 3 h, and pαB-crystallin-Ser59 increased ~10-fold at 3 h. Prior to exercise most of the sHSP and psHSP pools were present in the cytosolic compartment. Eccentric exercise resulted in partial redistribution of HSP27 (~23%) from the cytosol to the cytoskeletal fraction (~28% for pHSP27-Ser15 and ~7% for pHSP27-Ser82), with subsequent full reversal within 24 h. αB-crystallin also showed partial redistribution from the cytosolic to cytoskeletal fraction (~18% of total) 3 h post-ECC1, but not after ECC2. There was no redistribution or phosphorylation of sHSPs with CONC. Eccentric exercise results in increased sHSP phosphorylation and translocation to the cytoskeletal fraction, but the sHSP translocation is not dependent on their phosphorylation.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Exercício Físico/fisiologia , Proteínas de Choque Térmico/metabolismo , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Adaptação Fisiológica/fisiologia , Proteínas de Choque Térmico/química , Humanos , Masculino , Peso Molecular , Fosforilação , Condicionamento Físico Humano/métodos , Transporte Proteico/fisiologia , Adulto Jovem
19.
J Appl Physiol (1985) ; 116(11): 1503-11, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23620494

RESUMO

Through its upregulation and/or translocation, heat shock protein 72 (HSP72) is involved in protection and repair of key proteins after physiological stress. In human skeletal muscle we investigated HSP72 protein after eccentric (ECC1) and concentric (CONC) exercise and repeated eccentric exercise (ECC2; 8 wk later) and whether it translocated from its normal cytosolic location to membranes/myofibrils. HSP72 protein increased ~2-fold 24 h after ECC1, with no apparent change after CONC or ECC2. In resting (nonstressed) human skeletal muscle the total pool of HSP72 protein was present almost exclusively in the cytosolic fraction, and after each exercise protocol the distribution of HSP72 protein remained unaltered. Overall, the amount of HSP72 protein in the cytosol increased 24 h after ECC1, matching the fold increase that was measured in total HSP72 protein. To better ascertain the capabilities and limitations of HSP72, using quantitative Western blotting we determined the HSP72 protein content to be 11.4 µmol/kg wet weight in resting human vastus lateralis muscle, which is comprised of Type I (slow-twitch) and Type II (fast-twitch) fibers. HSP72 protein content was similar in individual Type I or II fiber segments. After physiological stress, HSP72 content can increase and, although the functional consequences of increased amounts of HSP72 protein are poorly understood, it has been shown to bind to and protect protein pumps like SERCA and Na(+)-K(+)-ATPase. Given no translocation of cytosolic HSP72, these findings suggest eccentric contractions, unlike other forms of stress such as heat, do not trigger tight binding of HSP72 to its primary membrane-bound target proteins, in particular SERCA.


Assuntos
Exercício Físico , Proteínas de Choque Térmico HSP72/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Condicionamento Físico Humano/efeitos adversos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Frações Subcelulares/metabolismo , Feminino , Humanos , Masculino , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/ultraestrutura , Adulto Jovem
20.
J Physiol ; 591(23): 5823-31, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24127618

RESUMO

Western blotting has been used for protein analyses in a wide range of tissue samples for >30 years. Fundamental to Western blotting success are a number of important considerations, which unfortunately are often overlooked or not appreciated. Firstly, lowly expressed proteins may often be better detected by dramatically reducing the amount of sample loaded. Single cell (fibre) Western blotting demonstrates the ability to detect proteins in small sample sizes, 5-10 µg total mass (1-3 µg total protein). That is an order of magnitude less than often used. Using heterogeneous skeletal muscle as the tissue of representation, the need to undertake Western blotting in sample sizes equivalent to single fibre segments is demonstrated. Secondly, incorrect results can be obtained if samples are fractionated and a proportion of the protein of interest inadvertently discarded during sample preparation. Thirdly, quantitative analyses demand that a calibration curve be used. This is regardless of using a loading control, which must be proven to not change with the intervention and also be appropriately calibrated. Fourthly, antibody specificity must be proven using whole tissue analyses, and for immunofluorescence analyses it is vital that only a single protein is detected. If appropriately undertaken, Western blotting is reliable, quantitative, both in relative and absolute terms, and extremely valuable.


Assuntos
Western Blotting/métodos , Proteínas/análise , Animais , Anticorpos/imunologia , Calibragem , Músculo Esquelético/química , Proteínas/química , Proteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA