Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Patterns (N Y) ; 2(1): 100156, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33511362

RESUMO

Digital technology is having a major impact on many areas of society, and there is equal opportunity for impact on science. This is particularly true in the environmental sciences as we seek to understand the complexities of the natural environment under climate change. This perspective presents the outcomes of a summit in this area, a unique cross-disciplinary gathering bringing together environmental scientists, data scientists, computer scientists, social scientists, and representatives of the creative arts. The key output of this workshop is an agreed vision in the form of a framework and associated roadmap, captured in the Windermere Accord. This accord envisions a new kind of environmental science underpinned by unprecedented amounts of data, with technological advances leading to breakthroughs in taming uncertainty and complexity, and also supporting openness, transparency, and reproducibility in science. The perspective also includes a call to build an international community working in this important area.

2.
Risk Anal ; 39(11): 2457-2478, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31318475

RESUMO

Scour (localized erosion by water) is an important risk to bridges, and hence many infrastructure networks, around the world. In Britain, scour has caused the failure of railway bridges crossing rivers in more than 50 flood events. These events have been investigated in detail, providing a data set with which we develop and test a model to quantify scour risk. The risk analysis is formulated in terms of a generic, transferrable infrastructure network risk model. For some bridge failures, the severity of the causative flood was recorded or can be reconstructed. These data are combined with the background failure rate, and records of bridges that have not failed, to construct fragility curves that quantify the failure probability conditional on the severity of a flood event. The fragility curves generated are to some extent sensitive to the way in which these data are incorporated into the statistical analysis. The new fragility analysis is tested using flood events simulated from a spatial joint probability model for extreme river flows for all river gauging sites in Britain. The combined models appear robust in comparison with historical observations of the expected number of bridge failures in a flood event. The analysis is used to estimate the probability of single or multiple bridge failures in Britain's rail network. Combined with a model for passenger journey disruption in the event of bridge failure, we calculate a system-wide estimate for the risk of scour failures in terms of passenger journey disruptions and associated economic costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA