RESUMO
INTRODUCTION: Phocaeicola vulgatus (basonym Bacteroides vulgatus) belongs to the intestinal microbiome of healthy humans and animals, where it participates in the fermentative breakdown of biopolymers ingested with food. In doing so, P. vulgatus contributes to the shaping of the gut metabolome, which benefits the host health. Moreover, considering the fermentation product range (short chain fatty acids), P. vulgatus suggests itself as a potential nonstandard platform organism for a sustainable production of basic organic chemicals. Complementing a recent physiologic-proteomic report deciphering the strain's versatile fermentation network, the present study focusses on the global growth phase-dependent response of P. vulgatus. METHODS: P. vulgatus was anaerobically cultivated with glucose as sole source of carbon and energy in process-controlled bioreactors operated in parallel. Close sampling was conducted to measure growth parameters (OD, CDW, ATP-content, substrate/product profiles) as basis for determining growth stoichiometry in detail. A coarser sampling (½ODmax, ODmax, and ODstat) served the molecular analysis of the global growth phase-dependent response, studied by means of differential proteomics (soluble and membrane fractions, nanoLC-ESI-MS/MS) as well as targeted metabolite (GC-MS and LC-MS/MS) and untargeted exometabolome (FT-ICR-MS) analyses. RESULTS: The determined growth performance of P. vulgatus features 1.74 h doubling time, 0.06 gCDW/mmolGlc biomass yield, 0.36 (succinate) and 0.61 (acetate) mmolP/mmolGlc as predominant fermentation product yields, and 0.43 mmolATP/mmolC as theoretically calculated ATP yield. The fermentation pathway displayed distinct growth phase-dependent dynamics: the levels of proteins and their accompanying metabolites constituting the upper part of glycolysis peaked at ½ODmax, whereas those of the lower part of glycolysis and of the fermentation routes in particular toward the predominant products acetate and succinate were highest at ODmax and ODstat. While identified proteins of monomer biosynthesis displayed rather unspecific profiles, most of the intracellular amino acids peaked at ODmax. By contrast, proteins and metabolites related to stress response and quorum sensing showed increased abundances at ODmax and ODstat. Finally, the composition of the exometabolome expanded from 2,317 molecular formulas at ½ODmax via 4,258 at ODmax to 4,501 at ODstat, with growth phase-specific subsets increasing in parallel. CONCLUSIONS: The present study provides insights into the distinct growth phase-dependent behavior of P. vulgatus during cultivation in bioreactors on the physiological and molecular levels. This could serve as a valuable knowledge-base for further developing P. vulgatus as a nonconventional platform organism for biotechnological applications. In addition, the findings shed new light on the potential growth phase-dependent imprints of P. vulgatus on the gut microbiome environment, e.g., by indicating interactions via quorum sensing and by unraveling the complex exometabolic background against which fermentation products and secondary metabolites are formed.
Assuntos
Reatores Biológicos , Fermentação , Microbioma Gastrointestinal , Glucose , Microbioma Gastrointestinal/fisiologia , Fermentação/fisiologia , Glucose/metabolismo , Reatores Biológicos/microbiologia , Proteômica , Proteínas de Bactérias/metabolismo , Humanos , Bacteroides/metabolismo , Bacteroides/crescimento & desenvolvimento , Anaerobiose/fisiologia , Metaboloma/fisiologiaRESUMO
INTRODUCTION: Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS: P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS: The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (m
Assuntos
Fermentação , Proteômica , Fermentação/fisiologia , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Anaerobiose/fisiologia , Fibras na Dieta/metabolismo , Humanos , Bacteroidetes/metabolismo , Redes e Vias MetabólicasRESUMO
IMPORTANCE: Aromatic compounds are globally abundant organic molecules with a multitude of natural and anthropogenic sources, underpinning the relevance of their biodegradation. A. aromaticum EbN1T is a well-studied environmental betaproteobacterium specialized on the anaerobic degradation of aromatic compounds. The here studied responsiveness toward phenol in conjunction with the apparent high ligand selectivity (non-promiscuity) of its PheR sensor and those of the related p-cresol (PcrS) and p-ethylphenol (EtpR) sensors are in accord with the substrate-specificity and biochemical distinctiveness of the associated degradation pathways. Furthermore, the present findings advance our general understanding of the substrate-specific regulation of the strain's remarkable degradation network and of the concentration thresholds below which phenolic compounds become essentially undetectable and as a consequence should escape substantial biodegradation. Furthermore, the findings may inspire biomimetic sensor designs for detecting and quantifying phenolic contaminants in wastewater or environments.