Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Virol ; 98(7): e0067824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953380

RESUMO

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , COVID-19 , Reações Cruzadas , Receptores de IgG , SARS-CoV-2 , Transdução de Sinais , Receptores de IgG/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Transdução de Sinais/imunologia , Testes de Neutralização , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Sci Rep ; 13(1): 1222, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681693

RESUMO

The SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern (VOC) and its sub-lineages (including BA.2, BA.4, BA.5, BA.2.12.1) contain spike mutations that confer high level resistance to neutralizing antibodies induced by vaccination with ancestral spike or infection with previously circulating variants. The NVX-CoV2373 vaccine, a protein nanoparticle vaccine containing the ancestral spike sequence, has value in countries with constrained cold-chain requirements. Here we report neutralizing titers following two or three doses of NVX-CoV2373. We show that after two doses, Omicron sub-lineages BA.1 and BA.4/BA.5 were resistant to neutralization by 72% (21/29) and 59% (17/29) of samples respectively. However, after a third dose of NVX-CoV2373, we observed high titers against Omicron BA.1 (GMT: 1,197) and BA.4/BA.5 (GMT: 582), with responses similar in magnitude to those triggered by three doses of an mRNA vaccine. These data are of particular relevance as BA.4/BA.5 is dominating in multiple locations, and highlight the potential utility of the NVX-CoV2373 vaccine as a booster in resource-limited environments.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Mutação , Anticorpos Antivirais
3.
Cell Rep Med ; 4(1): 100910, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603577

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Soroterapia para COVID-19 , SARS-CoV-2 , Humanos , Anticorpos , Infecções Irruptivas , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia
4.
Sci Rep ; 12(1): 16473, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182959

RESUMO

Antibodies with the same variable region can exist as multiple isotypes with varying neutralization potencies, though the mechanism for this is not fully defined. We previously isolated an HIV-directed IgA1 monoclonal antibody (mAb), CAP88-CH06, and showed that IgA1 and IgG3 isotypes of this antibody demonstrated enhanced neutralization compared to IgG1. To explore the mechanism behind this, hinge region and constant heavy chain (CH1) chimeras were constructed between the IgA1, IgG3 and IgG1 mAbs and assessed for neutralization activity, antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC). Hinge chimeras revealed that the increased neutralization potency and phagocytosis of the IgG3 isotype was attributed to its longer hinge region. In contrast, for IgA1, CH1 chimeras showed that this region was responsible both for enhanced neutralization potency and decreased ADCP, though ADCC was not affected. Overall, these data show that the enhanced neutralization potency of CAP88-CH06 IgG3 and IgA1, compared to IgG1, is achieved through distinct mechanisms. Understanding the influence of the hinge and CH1 regions on Fab domain function may provide insights into the engineering of therapeutic antibodies with increased neutralization potency.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/genética , HIV-1/genética , Humanos , Imunoglobulina A/genética , Imunoglobulina G
5.
PLoS Pathog ; 18(9): e1010450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054228

RESUMO

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5-3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Aminoácidos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/química , Epitopos/genética , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Humanos , Solventes
6.
J Virol ; 96(15): e0055822, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867572

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Nat Commun ; 13(1): 1976, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396511

RESUMO

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Cell Host Microbe ; 30(6): 880-886.e4, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436444

RESUMO

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização
9.
Front Immunol ; 12: 733958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566999

RESUMO

The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.


Assuntos
Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Facilitadores , Anticorpos Amplamente Neutralizantes/genética , Engenharia Genética , Anticorpos Anti-HIV/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Testes de Neutralização , Fagocitose , Ligação Proteica , Receptores de IgG/metabolismo , Células THP-1
11.
Nat Med ; 27(4): 622-625, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33654292

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune , Testes de Neutralização , SARS-CoV-2/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Doadores de Sangue , Vacinas contra COVID-19/imunologia , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia
12.
bioRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33688657

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

13.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501446

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.

14.
Cell Rep ; 33(8): 108430, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238131

RESUMO

Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an "arms race" between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term "switch redemption." Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses.


Assuntos
HIV-1/imunologia , Switching de Imunoglobulina/imunologia , Testes de Neutralização/métodos , Humanos
15.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619559

RESUMO

Passive administration of HIV-directed broadly neutralizing antibodies (bNAbs) can prevent infection in animal models, and human efficacy trials are under way. Single-chain variable fragments (scFv), comprised of only the variable regions of antibody heavy and light chains, are smaller molecules that may offer advantages over full-length IgG. We designed and expressed scFv of HIV bNAbs prioritized for clinical testing that target the V2-apex (CAP256-VRC26.25), V3-glycan supersite (PGT121), CD4 binding site (3BNC117), and MPER (10E8v4). The use of either a 15- or 18-amino-acid glycine-serine linker between the heavy- and light-chain fragments provided adequate levels of scFv expression. When tested against a 45-multisubtype virus panel, all four scFv retained good neutralizing activity, although there was variable loss of function compared to the parental IgG antibodies. For CAP256-VRC26.25, there was a significant 138-fold loss of potency that was in part related to differential interaction with charged amino acids at positions 169 and 170 in the V2 epitope. Potency was reduced for the 3BNC117 (13-fold) and PGT121 (4-fold) scFv among viruses lacking the N276 and N332 glycans, respectively, and in viruses with a longer V1 loop for PGT121. This suggested that scFv interacted with their epitopes in subtly different ways, with variation at key residues affecting scFv neutralization more than the matched IgGs. Remarkably, the scFv of 10E8v4 maintained breadth of 100% with only a minor reduction in potency. Overall, scFv of clinically relevant bNAbs had significant neutralizing activity, indicating that they are suitable for passive immunization to prevent HIV-1 infection.IMPORTANCE Monoclonal antibodies have been isolated against conserved epitopes on the HIV trimer and are being investigated for passive immunization. Some of the challenges associated with full-sized antibody proteins may be overcome by using single-chain variable fragments (scFv). These smaller forms of antibodies can be produced more efficiently, may show fewer off-target effects with increased tissue penetration, and are more adaptable to vectored-mediated expression than IgG. Here, we demonstrate that scFv of four HIV-directed bNAbs (CAP256-VRC26.25, PGT121, 3BNC117, and 10E8v4) had significant neutralizing activity against diverse global strains of HIV. Loss of potency and/or breadth was shown to be due to increased dependence of the scFv on key residues within the epitope. These smaller antibody molecules with functional activity in the therapeutic range may be suitable for further development as passive immunity for HIV prevention.


Assuntos
Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos de Cadeia Única/imunologia , Humanos
16.
PLoS Pathog ; 15(12): e1008064, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31841557

RESUMO

Broadly neutralizing antibodies (bNAbs) protect against HIV infection in non-human primates and their efficacy may be enhanced through interaction with Fc receptors on immune cells. Antibody isotype is a modulator of this binding with the IgG3 subclass mediating potent Fc effector function and is associated with HIV vaccine efficacy and HIV control. BNAb functions are typically assessed independently of the constant region with which they are naturally expressed. To examine the role of natural isotype in the context of a bNAb lineage we studied CAP256, an HIV-infected individual that mounted a potent V2-specific bNAb response. CAP256 expressed persistently high levels of plasma IgG3 which we found mediated both broad neutralizing activity and potent Fc function. Sequencing of germline DNA and the constant regions of V2-directed bNAbs from this donor revealed the expression of a novel IGHG3 allele as well as IGHG3*17, an allele that produces IgG3 antibodies with increased plasma half-life. Both allelic variants were used to generate CAP256-VRC26.25 and CAP256-VRC26.29 IgG3 bNAbs and these were compared to IgG1 versions. IgG3 variants were shown to have significantly higher phagocytosis and trogocytosis compared to IgG1 versions, which corresponded to increased affinity for FcγRIIa. Neutralization potency was also significantly higher for IgG3 bNAbs, particularly against viruses lacking the N160 glycan. By exchanging hinge regions between subclass variants, we showed that hinge length modulated both neutralization potency and Fc function. This study showed that co-operation between the variable and natural IgG3 constant regions enhanced the polyfunctionality of antibodies, indicating the value of leveraging genetic variation which could be exploited for passive immunity.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Imunoglobulina G/imunologia , Isotipos de Imunoglobulinas/imunologia , Adulto , Feminino , Infecções por HIV/imunologia , Humanos , Receptores Fc/imunologia
17.
Mol Ther Methods Clin Dev ; 14: 100-112, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31334303

RESUMO

HIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable. To overcome these obstacles, adeno-associated virus (AAV) vectors were used to provide long-term expression of antibodies targeting the V2 region of the HIV-1 envelope protein, including the potent CAP256-VRC26.25 bNAb, as well as non-neutralizing CAP228 antibodies that resemble those elicited by vaccination. AAVs mediated effective antibody expression in cell culture and immunocompetent mice. Mean concentrations of human immunoglobulin G (IgG) in mouse sera increased rapidly following a single AAV injection, reaching 8-60 µg/mL for CAP256 antibodies and 44-220 µg/mL for CAP228 antibodies over 24 weeks, but antibody concentrations varied for individual mice. Secreted antibodies collected from serum retained the expected binding and neutralizing activity. The vectors generated here are, therefore, suitable for the delivery of V2-targeting HIV antibodies, and they could be used in a vectored immunoprophylaxis (VIP) approach to sustain the level of antibody expression required to prevent HIV infection.

18.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842323

RESUMO

HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.


Assuntos
Genitália Feminina/virologia , Proteína gp160 do Envelope de HIV/genética , Vagina/virologia , Adolescente , Adulto , Feminino , Anticorpos Anti-HIV/genética , Proteína gp160 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Soropositividade para HIV/genética , HIV-1/imunologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Filogenia , RNA Viral/genética , Infecções do Sistema Genital/virologia , África do Sul , Carga Viral , Viremia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
19.
Retrovirology ; 12: 54, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105197

RESUMO

BACKGROUND: The integrin α4ß7 mediates the trafficking of immune cells to the gut associated lymphoid tissue (GALT) and is an attachment factor for the HIV gp120 envelope glycoprotein. We developed a viral replication inhibition assay to more clearly evaluate the role of α4ß7 in HIV infection and the contribution of viral and host factors. RESULTS: Replication of 60 HIV-1 subtype C viruses collected over time from 11 individuals in the CAPRISA cohort were partially inhibited by antibodies targeting α4ß7. However, dependence on α4ß7 for replication varied substantially among viral isolates from different individuals as well as over time in some individuals. Among 8 transmitted/founder (T/F) viruses, α4ß7 reactivity was highest for viruses having P/SDI/V tri-peptide binding motifs. Mutation of T/F viruses that had LDI/L motifs to P/SDI/V resulted in greater α4ß7 reactivity, whereas mutating P/SDI/V to LDI/L motifs was associated with reduced α4ß7 binding. P/SDI/V motifs were more common among South African HIV subtype C viruses (35%) compared to subtype C viruses from other regions of Africa (<8%) and to other subtypes, due in part to a founder effect. In addition, individuals with bacterial vaginosis (BV) and who had higher concentrations of IL-7, IL-8 and IL-1α in the genital tract had T/F viruses with higher α4ß7 dependence for replication, suggesting that viruses with P/SDI/V motifs may be preferentially transmitted in the presence of BV in this population. CONCLUSIONS: Collectively, these data suggest a role for α4ß7 in HIV infection that is influenced by both viral and host factors including the sequence of the α4ß7 binding motif, the cytokine milieu and BV in the genital tract. The higher frequency of P/SDI/V sequences among South African HIV-1 subtype C viruses may have particular significance for the role of α4ß7 in this geographical region.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Integrinas/metabolismo , Replicação Viral , Feminino , Genótipo , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Estudos Prospectivos , África do Sul
20.
J Immunol ; 194(9): 4371-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825450

RESUMO

The human Ig repertoire is vast, producing billions of unique Abs from a limited number of germline Ig genes. The IgH V region (IGHV) is central to Ag binding and consists of 48 functional genes. In this study, we analyzed whether HIV-1-infected individuals who develop broadly neutralizing Abs show a distinctive germline IGHV profile. Using both 454 and Illumina technologies, we sequenced the IGHV repertoire of 28 HIV-infected South African women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002 and 004 cohorts, 13 of whom developed broadly neutralizing Abs. Of the 259 IGHV alleles identified in this study, approximately half were not found in the International Immunogenetics Database (IMGT). This included 85 entirely novel alleles and 38 alleles that matched rearranged sequences in non-IMGT databases. Analysis of the rearranged H chain V region genes of mAbs isolated from seven of these women, as well as previously isolated broadly neutralizing Abs from other donors, provided evidence that at least eight novel or non-IMGT alleles contributed to functional Abs. Importantly, we found that, despite a wide range in the number of IGHV alleles in each individual, including alleles used by known broadly neutralizing Abs, there were no significant differences in germline IGHV repertoires between individuals who do and do not develop broadly neutralizing Abs. This study reports novel IGHV repertoires and highlights the importance of a fully comprehensive Ig database for germline gene usage prediction. Furthermore, these data suggest a lack of genetic bias in broadly neutralizing Ab development in HIV-1 infection, with positive implications for HIV vaccine design.


Assuntos
Anticorpos Neutralizantes , Genes de Imunoglobulinas , Células Germinativas/metabolismo , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Alelos , População Negra/genética , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Filogenia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA