Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 9(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34156393

RESUMO

Iron oxide nanoparticles (IONPs) have played a pivotal role in the development of nanomedicine owing to their versatile functions at the nanoscale, which facilitates targeted delivery, high contrast imaging, and on-demand therapy. Some biomedical inadequacies of IONPs on their own, such as the poor resolution of IONP-based Magnetic Resonance Imaging (MRI), can be overcome by co-incorporating optical probes onto them, which can be either molecule- or nanoparticulate-based. Optical probe incorporated IONPs, together with two prominent non-ionizing radiation sources (i.e., magnetic field and light), enable a myriad of biomedical applications from early detection to targeted treatment of various diseases. In this context, many research articles are in the public domain on magneto-optical nanoparticles; discussed in detail are fabrication strategies for their application in the biomedical field; however, lacking is a comprehensive review on real-life applications in vivo, their toxicity, and the prospect of bench-to-bedside clinical studies. Therefore, in this review, we focused on selecting such important nanocomposites where IONPs become the magnetic component, conjugated with various types of optical probes; we clearly classified them into class 1 to class 6 categories and present only in vivo studies. In addition, we briefly discuss the potential toxicity of such nanocomposites and their respective challenges for clinical translations.

2.
Nanomedicine (Lond) ; 16(11): 943-962, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913338

RESUMO

The role and scope of functional inorganic nanoparticles in biomedical research is well established. Among these, iron oxide nanoparticles (IONPs) have gained maximum attention as they can provide targeting, imaging and therapeutic capabilities. Furthermore, incorporation of organic optical probes with IONPs can significantly enhance the scope and viability of their biomedical applications. Combination of two or more such applications renders multimodality in nanoparticles, which can be exploited to obtain synergistic benefits in disease detection and therapy viz theranostics, which is a key trait of nanoparticles for advanced biomedical applications. This review focuses on the use of IONPs conjugated with organic optical probe/s for multimodal diagnostic and therapeutic applications in vivo.


Assuntos
Nanopartículas , Fotoquimioterapia , Nanopartículas Magnéticas de Óxido de Ferro , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA