Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Sci Atmos ; 4(5): 531-546, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38764888

RESUMO

Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107 cm-3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2O4 and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.

2.
Natl Sci Rev ; 11(3): nwae014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390366

RESUMO

Organic vapors from biomass burning are a major source of secondary organic aerosols (SOAs). Previous smog chamber studies found that the SOA contributors in biomass-burning emissions are mainly volatile organic compounds (VOCs). While intermediate volatility organic compounds (IVOCs) are efficient SOA precursors and contribute a considerable fraction of biomass-burning emissions, their contribution to SOA formation has not been directly observed. Here, by deploying a newly-developed oxidation flow reactor to study SOA formation from wood burning, we find that IVOCs can contribute ∼70% of the formed SOA, i.e. >2 times more than VOCs. This previously missing SOA fraction is interpreted to be due to the high wall losses of semi-volatile oxidation products of IVOCs in smog chambers. The finding in this study reveals that SOA production from biomass burning is much higher than previously thought, and highlights the urgent need for more research on the IVOCs from biomass burning and potentially other emission sources.

3.
Environ Sci Atmos ; 4(2): 265-274, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371605

RESUMO

Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.

4.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38185880

RESUMO

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Assuntos
Poluentes Atmosféricos , Monoterpenos Bicíclicos , Ozônio , Compostos Orgânicos Voláteis , Monoterpenos/química , Nitratos/química , Aerossóis/análise , Compostos Orgânicos Voláteis/química
5.
Science ; 382(6676): 1308-1314, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096284

RESUMO

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3 is generally low, and H2SO4 is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4 and HIOx during atmospheric particle nucleation. We found that HIOx greatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3 strongly binds with H2SO4 in charged clusters so they drive particle nucleation synergistically. Second, HIO2 substitutes for NH3, forming strongly bound H2SO4-HIO2 acid-base pairs in molecular clusters. Global observations imply that HIOx is enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.

6.
Environ Sci Technol ; 57(6): 2297-2309, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716278

RESUMO

The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of C10H16O2-3, while the particle-phase concentrations of low-volatility species, such as C10H16O6-8, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.


Assuntos
Poluentes Atmosféricos , Monoterpenos , Monoterpenos/química , Umidade , Aerossóis
7.
Nat Chem ; 15(1): 129-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376388

RESUMO

Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2O → HIO3 + HOI + (1)O2. The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.


Assuntos
Iodatos , Iodo , Aerossóis
9.
Environ Sci Technol ; 56(19): 13931-13944, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137236

RESUMO

Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4 production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.

10.
Nature ; 605(7910): 483-489, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585346

RESUMO

New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1-4. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles-comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3-H2SO4-NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.

11.
Nat Geosci ; 15(3): 196-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341076

RESUMO

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

12.
Environ Sci Atmos ; 1(6): 434-448, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34604755

RESUMO

Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and ß-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.

13.
Environ Sci Technol ; 55(10): 6936-6943, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961408

RESUMO

Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (∼100 µg m-3), whereas the effect is less prevalent at lower loadings (∼20 µg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).


Assuntos
Poluentes Atmosféricos , Aerossóis , Monoterpenos Bicíclicos , Monoterpenos , Fotólise
14.
Sci Adv ; 7(13)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33762335

RESUMO

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).

15.
Science ; 371(6529): 589-595, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542130

RESUMO

Iodic acid (HIO3) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3 - and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2) followed by HIO3, showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere.

16.
Nat Commun ; 12(1): 300, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436593

RESUMO

Organic peroxy radicals (RO2) play a pivotal role in the degradation of hydrocarbons. The autoxidation of atmospheric RO2 radicals produces highly oxygenated organic molecules (HOMs), including low-volatility ROOR dimers formed by bimolecular RO2 + RO2 reactions. HOMs can initiate and greatly contribute to the formation and growth of atmospheric particles. As a result, HOMs have far-reaching health and climate implications. Nevertheless, the structures and formation mechanism of RO2 radicals and HOMs remain elusive. Here, we present the in-situ characterization of RO2 and dimer structure in the gas-phase, using online tandem mass spectrometry analyses. In this study, we constrain the structures and formation pathway of several HOM-RO2 radicals and dimers produced from monoterpene ozonolysis, a prominent atmospheric oxidation process. In addition to providing insights into atmospheric HOM chemistry, this study debuts online tandem MS analyses as a unique approach for the chemical characterization of reactive compounds, e.g., organic radicals.

17.
Nature ; 581(7807): 184-189, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405020

RESUMO

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

18.
Anal Chem ; 92(1): 1316-1325, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825206

RESUMO

Metal emissions are of major environmental and practical concern because of their highly toxic effects on human health and ecosystems. Current technologies available in the market for their detection are typically limited by a time resolution of 1 h or longer (e.g., via semicontinuous X-ray fluorescence measurements) or are nonquantitative (e.g., laser ablation mass spectrometry). In this work, we report the development of a novel technique for the real-time detection and monitoring of metal particles in situ using an extractive electrospray ionization (EESI) source coupled to a high-resolution time-of-flight mass spectrometer (TOF-MS). The experiments were conducted in negative ionization mode using disodium ethylenediamine tetraacetic acid (EDTA) dihydrate to chelate with metals and form stable metal complexes. Results for water-soluble metal compounds were obtained. The following representative metal ions were examined: Pb, Cd, Zn, Ce (III), Ba, Ni, Fe(II), Fe(III), Cu(II), Cr, Mo, Co(II), Mg, Nd, Li, Ti, Ca, Cs, Ag, Tm, Er(III), La(III), Yb(III), Eu(III), Pr(III), Gd(III), Lu(III), Dy(III), Tb(III), Ho, and Ru(III). The results showed a very good linear mass response (R2 = 0.9983), low ng/m3 limits of detection (LoD), and a fast response time (1 s). The stability and repeatability of the developed EESI-TOF-MS were tested under complex dynamic and periodic experimental conditions, and negligible matrix effects were measured for internally and externally mixed metal particles. Benchmark testing against inductively coupled plasma-mass spectrometry (ICP-MS) was also performed, highlighting the online measurement capabilities of aerosol metals with a LoD lower than those of ICP-MS. Proof-of-concept ambient measurements were performed in New Delhi, India, and very promising results were obtained, allowing further exploitation elsewhere.


Assuntos
Metais Pesados/análise , Aerossóis/análise , Ácido Edético/química , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
19.
J Phys Chem A ; 123(44): 9462-9468, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31609621

RESUMO

Reaction rate constants for the reaction of n-dodecane with hydroxyl radicals were measured as a function of temperature between 283 and 303 K, using the relative rate method in the CESAM chamber (French acronym for "experimental multiphasic atmospheric simulation chamber"). The rate constants obtained at 283, 293, and 303 K are (1.27 ± 0.31) × 10-11, (1.33 ± 0.34) × 10-11, and (1.27 ± 0.40) × 10-11 cm3 molecule-1 s-1, respectively. Rate constants measured were in excellent agreement with the few available data in the literature over the studied temperature range (283-340 K). Rate constants estimated by the structure-activity relationship and transition state theory methods agreed with our experimental data within 14%. From these data combined with previous literature measurement, the following Arrhenius expression, kDDC+OH = (9.77 ± 6.19) × 10-11 × exp[(-595 ± 5580)/T] cm3 molecule-1 s-1, was found to be valid over a temperature range (283-340 K) of the tropospheric interest.

20.
Environ Sci Technol ; 53(21): 12357-12365, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553886

RESUMO

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Monoterpenos Bicíclicos , Monoterpenos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA