Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neurobiol Dis ; 191: 106392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145853

RESUMO

Having experienced stress during sensitive periods of brain development strongly influences how individuals cope with later stress. Some are prone to develop anxiety or depression, while others appear resilient. The as-yet-unknown mechanisms underlying these differences may lie in how genes and environmental stress interact to shape the circuits that control emotions. Here, we investigated the role of the habenulo-interpeduncular system (HIPS), a critical node in reward circuits, in early stress-induced anxiety in mice. We found that habenular and IPN components characterized by the expression of Otx2 are synaptically connected and particularly sensitive to chronic stress (CS) during the peripubertal period. Stress-induced peripubertal activation of this HIPS subcircuit elicits both HIPS hypersensitivity to later stress and susceptibility to develop anxiety. We also show that HIPS silencing through conditional Otx2 knockout counteracts these effects of stress. Together, these results demonstrate that a genetic factor, Otx2, and stress interact during the peripubertal period to shape the stress sensitivity of the HIPS, which is shown to be a key modulator of susceptibility or resilience to develop anxiety.


Assuntos
Habenula , Resiliência Psicológica , Camundongos , Animais , Transtornos de Ansiedade/metabolismo , Emoções , Habenula/metabolismo , Ansiedade
2.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475267

RESUMO

In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.


Assuntos
Fotofobia , Degeneração Retiniana , Animais , Camundongos , Fatores de Transcrição Otx/genética , Células Fotorreceptoras , Retina
3.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32737182

RESUMO

OTX2 is a homeoprotein transcription factor expressed in photoreceptors and bipolar cells in the retina. OTX2, like many other homeoproteins, transfers between cells and exerts non-cell autonomous effects such as promoting the survival of retinal ganglion cells that do not express the protein. Here we used a genetic approach to target extracellular OTX2 in the retina by conditional expression of a secreted single-chain anti-OTX2 antibody. Compared with control mice, the expression of this antibody by parvalbumin-expressing neurons in the retina is followed by a reduction in visual acuity in 1-month-old mice with no alteration of the retinal structure or cell type number or aspect. The a-waves and b-waves measured by electroretinogram were also indistinguishable from those of control mice, suggesting no functional deficit of photoreceptors and bipolar cells. Mice expressing the OTX2-neutralizing antibody did show a significant doubling in the flicker amplitude and a reduction in oscillatory potential, consistent with a change in inner retinal function. Our results show that interfering in vivo with OTX2 non-cell autonomous activity in the postnatal retina leads to an alteration in inner retinal cell functions and causes a deficit in visual acuity.


Assuntos
Fatores de Transcrição Otx , Retina , Animais , Eletrorretinografia , Camundongos , Fatores de Transcrição Otx/genética , Células Fotorreceptoras , Fatores de Transcrição
4.
J Neurosci ; 39(6): 1005-1019, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30593496

RESUMO

The habenulo-interpeduncular system (HIPS) is now recognized as a critical circuit modulating aversion, reward, and social behavior. There is evidence that dysfunction of this circuit leads to psychiatric disorders. Because psychiatric diseases may originate in developmental abnormalities, it is crucial to investigate the developmental mechanisms controlling the formation of the HIPS. Thus far, this issue has been the focus of limited studies. Here, we explored the developmental processes underlying the formation of the medial habenula (MHb) and its unique output, the interpeduncular nucleus (IPN), in mice independently of their gender. We report that the Otx2 homeobox gene is essential for the proper development of both structures. We show that MHb and IPN neurons require Otx2 at different developmental stages and, in both cases, Otx2 deletion leads to disruption of HIPS subcircuits. Finally, we show that Otx2+ neurons tend to be preferentially interconnected. This study reveals that synaptically connected components of the HIPS, despite radically different developmental strategies, share high sensitivity to Otx2 expression.SIGNIFICANCE STATEMENT Brain reward circuits are highly complex and still poorly understood. In particular, it is important to understand how these circuits form as many psychiatric diseases may arise from their abnormal development. This work shows that Otx2, a critical evolutionary conserved gene implicated in brain development and a predisposing factor for psychiatric diseases, is required for the formation of the habenulo-interpeduncular system (HIPS), an important component of the reward circuit. Otx2 deletion affects multiple processes such as proliferation and migration of HIPS neurons. Furthermore, neurons expressing Otx2 are preferentially interconnected. Therefore, Otx2 expression may represent a code that specifies the connectivity of functional subunits of the HIPS. Importantly, the Otx2 conditional knock-out animals used in this study might represent a new genetic model of psychiatric diseases.


Assuntos
Habenula/crescimento & desenvolvimento , Núcleo Interpeduncular/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Fatores de Transcrição Otx/fisiologia , Animais , Movimento Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
5.
Oncogenesis ; 7(8): 60, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30100614

RESUMO

The developmental gene OTX2 is expressed by cerebellar granule cell precursors (GCPs), a cell population which undergoes massive expansion during the early postnatal period in response to sonic hedgehog (Shh). GCPs are thought to be at the origin of most medulloblastomas, a devastating paediatric cancer that arises in the developing cerebellum. OTX2 is overexpressed in all types of medulloblastomas, except in Shh-dependent type 2 medulloblastomas, although it has GCPs as cell-of-origin. This has led to the current view that OTX2 is not involved in tumorigenesis of this subgroup. How OTX2 might contribute to normal or tumoral GCP development in vivo remains unresolved. Here, we have investigated, for the first time, the physiological function of this factor in regulating proliferation and tumorigenesis in the developing mouse cerebellum. We first characterized Otx2-expressing cells in the early postnatal cerebellum and showed that they represent a unique subpopulation of highly proliferative GCPs. We next performed in vivo loss-of-function analysis to dissect out the role of Otx2 in these cells and identified a novel, Shh-independent, function for this factor in controlling postnatal GCP proliferation and cerebellum morphogenesis. Finally, we addressed the function of Otx2 in the context of type 2 medulloblastomas by directing Shh-dependent tumour formation in Otx2+ cells of the developing cerebellum and assessing the effects of Otx2 ablation in this context. We unravel an unexpected, mandatory function for Otx2 in sustaining cell proliferation and long-term maintenance of these tumours in vivo, therefore bringing unpredicted insight into the mechanisms of type 2 medulloblastoma subsistence. Together, these data pinpoint, for the first time, a crucial Shh-independent role for Otx2 in the control of proliferation of normal and tumoral granule cell precursors in vivo and make it an attractive candidate for targeted therapy in Shh-dependent medulloblastomas.

6.
Brain Struct Funct ; 223(7): 3279-3295, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29869132

RESUMO

In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.


Assuntos
Prosencéfalo Basal/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Fator 10 de Diferenciação de Crescimento/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Prosencéfalo Basal/embriologia , Linhagem da Célula , Complexo Nuclear Corticomedial/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Ácido Glutâmico/metabolismo , Fator 10 de Diferenciação de Crescimento/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética
7.
Biochem Biophys Res Commun ; 496(2): 568-574, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29339161

RESUMO

Choroid plexus carcinomas (CPCs) are highly malignant brain tumours predominantly found in children and associated to poor prognosis. Improved therapy for these cancers would benefit from the generation of animal models. Here we have created a novel mouse CPC model by expressing a stabilised form of c-Myc (MycT58A) and inactivating Trp53 in the choroid plexus of newborn mice. This induced aberrant proliferation of choroid plexus epithelial cells, leading to aggressive tumour development and death within 150 days. Choroid plexus tumours occurred with a complete penetrance in all brain ventricles, with prevalence in the lateral and fourth ventricles. Histological and cellular analysis indicated that these tumours were CPCs resembling their human counterparts. Comparison of gene expression profiles of CPCs and non-neoplastic tissues revealed profound alterations in cell cycle regulation and DNA damage responses, suggesting that dysregulation of cell division and DNA checkpoint pathways may represent key vulnerabilities. This novel animal model of CPC provides an invaluable tool to elucidate the mechanism of CPC formation and to develop successful therapies against this devastating paediatric cancer.


Assuntos
Carcinoma/genética , Carcinoma/patologia , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/patologia , Plexo Corióideo/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células , Dano ao DNA , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Transcriptoma
8.
Cell Rep ; 13(5): 990-1002, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26565912

RESUMO

OTX2 (orthodenticle homeobox 2) haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2(+/GFP) heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2(+/GFP) mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2(+/GFP) mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.


Assuntos
Mitocôndrias/efeitos dos fármacos , Fatores de Transcrição Otx/farmacologia , Células Bipolares da Retina/efeitos dos fármacos , Distrofias Retinianas/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Injeções Intravítreas , Camundongos , Mitocôndrias/metabolismo , Fatores de Transcrição Otx/administração & dosagem , Fatores de Transcrição Otx/uso terapêutico , Células Bipolares da Retina/metabolismo
9.
Genesis ; 53(11): 685-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26426291

RESUMO

The Otx2 homeodomain transcription factor exerts multiple functions in specific developmental contexts, probably through the regulation of different sets of genes. Protein partners of Otx2 have been shown to modulate its activity. Therefore, the Otx2 interactome may play a key role in selecting a precise target-gene repertoire, hence determining its function in a specific tissue. To address the nature of Otx2 interactome, we generated a new recombinant Otx2(CTAP-tag) mouse line, designed for protein complexes purification. We validated this mouse line by establishing the Otx2 interactome in the adult neural retina. In this tissue, Otx2 is thought to have overlapping function with its paralog Crx. Our analysis revealed that, in contrary to Crx, Otx2 did not develop interactions with proteins that are known to regulate phototransduction genes but showed specific partnership with factors associated with retinal development. The relationship between Otx2 and Crx in the neural retina should therefore be considered as complementarity rather than redundancy. Furthermore, study of the Otx2 interactome revealed strong associations with RNA processing and translation machineries, suggesting unexpected roles for Otx2 in the regulation of selected target genes all along the transcription/translation pathway. The Otx2(CTAP-tag) line, therefore, appears suitable for a systematic approach to Otx2 protein-protein interactions. genesis 53:685-694, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Fatores de Transcrição Otx/metabolismo , Retina/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Transativadores/metabolismo
10.
Development ; 142(16): 2792-800, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26160903

RESUMO

Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial target of N-myc during inner ear development. Otx2 expression is lost in N-myc mouse mutants, and N-myc misexpression in the chick inner ear leads to ectopic expression of Otx2. Furthermore, Otx2 enhancer activity is increased by N-myc misexpression, indicating that N-myc may directly regulate Otx2. Inactivation of Otx2 in the mouse inner ear leads to ectopic expression of prosensory markers in non-sensory regions of the cochlear duct. Upon further differentiation, these domains give rise to an ectopic organ of Corti, together with the re-specification of non-sensory areas into sensory epithelia, and the loss of Reissner's membrane. Therefore, the Otx2-positive domain of the cochlear duct shows a striking competence to develop into a mirror-image copy of the organ of Corti. Taken together, these data show that Otx2 acts downstream of N-myc and is essential for patterning and spatial restriction of the sensory domain of the mammalian cochlea.


Assuntos
Cóclea/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Audição/fisiologia , Morfogênese/fisiologia , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Cóclea/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Transgênicos
11.
Hum Mol Genet ; 24(4): 939-53, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25315894

RESUMO

OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland.


Assuntos
Ectoderma/embriologia , Ectoderma/metabolismo , Deleção de Genes , Organogênese/genética , Fatores de Transcrição Otx/genética , Adeno-Hipófise/embriologia , Adeno-Hipófise/metabolismo , Animais , Proliferação de Células , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Mutação , Fatores de Transcrição Otx/metabolismo , Fenótipo , Adeno-Hipófise/patologia , Transdução de Sinais
12.
Development ; 141(20): 3859-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25231759

RESUMO

The Otx2 gene encodes a paired-type homeobox transcription factor that is essential for the induction and the patterning of the anterior structures in the mouse embryo. Otx2 knockout embryos fail to form a head. Whereas previous studies have shown that Otx2 is required in the anterior visceral endoderm and the anterior neuroectoderm for head formation, its role in the anterior mesendoderm (AME) has not been assessed specifically. Here, we show that tissue-specific ablation of Otx2 in the AME phenocopies the truncation of the embryonic head of the Otx2 null mutant. Expression of Dkk1 and Lhx1, two genes that are also essential for head formation, is disrupted in the AME of the conditional Otx2-deficient embryos. Consistent with the fact that Dkk1 is a direct target of OTX2, we showed that OTX2 can interact with the H1 regulatory region of Dkk1 to activate its expression. Cross-species comparative analysis, RT-qPCR, ChIP-qPCR and luciferase assays have revealed two conserved regions in the Lhx1 locus to which OTX2 can bind to activate Lhx1 expression. Abnormal development of the embryonic head in Otx2;Lhx1 and Otx2;Dkk1 compound mutant embryos highlights the functional intersection of Otx2, Dkk1 and Lhx1 in the AME for head formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Mesoderma/fisiologia , Fatores de Transcrição Otx/fisiologia , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Cruzamentos Genéticos , Luciferases/metabolismo , Camundongos , Mutação , Fenótipo
13.
PLoS One ; 9(2): e89110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558479

RESUMO

During mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural retina, where the related Crx homeobox gene, a major regulator of photoreceptor development, is also expressed. To get a deeper view of mouse Otx2 activities in the neural retina, we performed chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq) on Otx2. Using two independent ChIP-seq assays, we identified consistent sets of Otx2-bound cis-regulatory elements. Comparison with our previous RPE-specific Otx2 ChIP-seq data shows that Otx2 occupies different functional domains of the genome in RPE cells and in neural retina cells and regulates mostly different sets of genes. To assess the potential redundancy of Otx2 and Crx, we compared our data with Crx ChIP-seq data. While Crx genome occupancy markedly differs from Otx2 genome occupancy in the RPE, it largely overlaps that of Otx2 in the neural retina. Thus, in accordance with its essential role in the RPE and its non-essential role in the neural retina, Otx2 regulates different gene sets in the RPE and the neural retina, and shares an important part of its repertoire with Crx in the neural retina. Overall, this study provides a better understanding of gene-regulatory networks controlling photoreceptor homeostasis and disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/fisiologia , Retina/fisiologia , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Análise em Microsséries , Dados de Sequência Molecular , Fatores de Transcrição Otx/metabolismo , Elementos Reguladores de Transcrição/genética , Retina/metabolismo , Transativadores/genética , Transativadores/metabolismo
14.
Development ; 141(1): 166-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24346699

RESUMO

Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the gene encoding the ubiquitous TRα1 receptor. Using CRE/loxP-mediated conditional expression approach, we found that this mutation primarily alters the differentiation of Purkinje cells and Bergmann glia, two cerebellum-specific cell types. These primary defects indirectly affect cerebellum development in a global manner. Notably, the inward migration and terminal differentiation of granule cell precursors is impaired. Therefore, despite the broad distribution of its receptors, thyroid hormone targets few cell types that exert a predominant role in the network of cellular interactions that govern normal cerebellum maturation.


Assuntos
Cerebelo/embriologia , Neuroglia/metabolismo , Células de Purkinje/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células , Cerebelo/citologia , Cerebelo/metabolismo , Proteínas do Olho/biossíntese , Proteínas de Homeodomínio/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Repressoras/biossíntese , Receptores alfa dos Hormônios Tireóideos/genética
15.
J Neurosci ; 33(24): 9890-904, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761884

RESUMO

Photoreceptors are specialized neurons of the retina that receive nursing from the adjacent retinal pigment epithelium (RPE). Frequent in the elderly, photoreceptor loss can originate from primary dysfunction of either cell type. Despite intense interest in the etiology of these diseases, early molecular actors of late-onset photoreceptor degeneration remain elusive, mostly because of the lack of dedicated models. Conditional Otx2 ablation in the adult mouse retina elicits photoreceptor degeneration, providing a new model of late-onset neuronal disease. Here, we use this model to identify the earliest events after Otx2 ablation. Electroretinography and gene expression analyses suggest a nonautonomous, RPE-dependent origin for photoreceptor degeneration. This is confirmed by RPE-specific ablation of Otx2, which results in similar photoreceptor degeneration. In contrast, constitutive Otx2 expression in RPE cells prevents degeneration of photoreceptors in Otx2-ablated retinas. We use chromatin immunoprecipitation followed by massive sequencing (ChIP-seq) analysis to identify the molecular network controlled in vivo by Otx2 in RPE cells. We uncover four RPE-specific functions coordinated by Otx2 that underpin the cognate photoreceptor degeneration. Many direct Otx2 target genes are associated with human retinopathies, emphasizing the significance of the model. Importantly, we report a secondary genetic response after Otx2 ablation, which largely precedes apoptosis of photoreceptors, involving inflammation and stress genes. These findings thus provide novel general markers for clinical detection and prevention of neuronal cell death.


Assuntos
Regulação da Expressão Gênica/genética , Fatores de Transcrição Otx/deficiência , Células Fotorreceptoras/patologia , Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Fatores Etários , Animais , Astrócitos/fisiologia , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/genética , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição Otx/genética , Células Fotorreceptoras/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia
16.
Exp Eye Res ; 111: 9-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23523800

RESUMO

The Otx2 gene encodes a transcription factor essential for the normal development of brain, cerebellum, pineal gland, and eye. In the retina, Otx2 has essential functions from early embryogenesis to adulthood. As soon as the optic vesicle is formed, the gene is required for retinal pigment epithelium specification. Otx2 is also a key regulator of photoreceptor genesis and differentiation, and is required after birth for bipolar cells terminal maturation. Otx2 expression is maintained in the differentiated retina wherein the gene is critical for the outer retina maintenance. In the visual cortex, the gene modulates the neuronal plasticity through a paracrine mechanism. OTX2 heterozygous mutations in humans have been linked to severe ocular malformations associated with brain abnormalities and pituitary dysfunction. Recent studies have also established the OTX2 gene as an oncogene for medulloblastoma, a malignant brain tumour originating in the cerebellum.


Assuntos
Encéfalo/embriologia , Oftalmopatias/genética , Olho/embriologia , Genes Homeobox/fisiologia , Fatores de Transcrição Otx/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos
17.
Proc Natl Acad Sci U S A ; 108(23): 9703-8, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606375

RESUMO

During early development, midbrain dopaminergic (mDA) neuronal progenitors (NPs) arise from the ventral mesencephalic area by the combined actions of secreted factors and their downstream transcription factors. These mDA NPs proliferate, migrate to their final destinations, and develop into mature mDA neurons in the substantia nigra and the ventral tegmental area. Here, we show that such authentic mDA NPs can be efficiently isolated from differentiated ES cells (ESCs) using a FACS method combining two markers, Otx2 and Corin. Purified Otx2(+)Corin(+) cells coexpressed other mDA NP markers, including FoxA2, Lmx1b, and Glast. Using optimized culture conditions, these mDA NPs continuously proliferated up to 4 wk with almost 1,000-fold expansion without significant changes in their phenotype. Furthermore, upon differentiation, Otx2(+)Corin(+) cells efficiently generated mDA neurons, as evidenced by coexpression of mDA neuronal markers (e.g., TH, Pitx3, Nurr1, and Lmx1b) and physiological functions (e.g., efficient DA secretion and uptake). Notably, these mDA NPs differentiated into a relatively homogenous DA population with few serotonergic neurons. When transplanted into PD model animals, aphakia mice, and 6-OHDA-lesioned rats, mDA NPs differentiated into mDA neurons in vivo and generated well-integrated DA grafts, resulting in significant improvement in motor dysfunctions without tumor formation. Furthermore, grafted Otx2(+)Corin(+) cells exhibited significant migratory function in the host striatum, reaching >3.3 mm length in the entire striatum. We propose that functional and expandable mDA NPs can be efficiently isolated by this unique strategy and will serve as useful tools in regenerative medicine, bioassay, and drug screening.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Mesencéfalo/citologia , Células-Tronco Neurais/citologia , Animais , Linhagem Celular , Proliferação de Células , Dopamina/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Atividade Motora , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson Secundária/cirurgia , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante de Células-Tronco/métodos
18.
PLoS One ; 5(7): e11673, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20657788

RESUMO

BACKGROUND: Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE), a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. METHODOLOGY/PRINCIPAL FINDINGS: Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. CONCLUSIONS: Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE.


Assuntos
Fatores de Transcrição Otx/fisiologia , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Western Blotting , Deleção de Genes , Genótipo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Fatores de Transcrição Otx/genética , Células Fotorreceptoras/patologia , Degeneração Retiniana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
BMC Evol Biol ; 9: 226, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19740411

RESUMO

BACKGROUND: Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans. RESULTS: We found FGFRL1 genes in the cnidarian Nematostella vectensis as well as in many bilaterian species. Our analysis also shows that FGFRL1 orthologous genes are linked in the genome with other members of the FGF signalling pathway from cnidarians to bilaterians (distance < 10 Mb). To better understand the implication of FGFRL1 genes in chordate embryonic development, we have analyzed expression patterns of the amphioxus and the mouse genes by whole mount in situ hybridization. We show that some homologous expression territories can be defined, and we propose that FGFRL1 and FGF8/17/18 were already co-expressed in the pharyngeal endoderm in the ancestor of chordates. CONCLUSION: Our work sheds light on the existence of a putative FGF signalling pathway actor present in the ancestor of probably all metazoans, the function of which has received little attention until now.


Assuntos
Cordados não Vertebrados/genética , Cnidários/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Camundongos , Dados de Sequência Molecular , Filogenia
20.
Mol Endocrinol ; 22(1): 23-32, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17872382

RESUMO

The pineal gland plays a central role in the photoneuroendocrine system and acts as a photosensory organ in lower vertebrates. The orphan nuclear receptor Rev-erbalpha (NR1D1) has previously been shown to be expressed in the pineal and to be regulated with a robust circadian rhythm during zebrafish embryogenesis. This early pineal expression is under the control of the transcription factor Orthodenticle homeobox 5 (Otx5). In this paper, we show that Otx5 regulates the second zfRev-erbalpha promoter, ZfP2. Despite the absence of a classical Otx-binding site within ZfP2, this regulation depends on the integrity of the Otx5 homeodomain. Mapping experiments as well as EMSAs show that this interaction between Otx5 and ZfP2 depends on a noncanonical bipartite Otx-binding site (GANNCTTA and TAAA) that we called pineal expression related element (PERE). We showed that PERE is necessary for pineal expression in vivo by injecting zebrafish embryos with wild type and mutated versions of zfRev-erbalpha promoter fused to green fluorescent protein. Interestingly, PERE is found upstream of other genes expressed in the pineal gland, suggesting that it may play an important role in governing pineal expression. Our data establish that PERE is a novel cis-acting element contributing to pineal-specific gene expression and to Otx target gene regulation.


Assuntos
DNA/metabolismo , Fatores de Transcrição Otx/metabolismo , Glândula Pineal/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Hibridização In Situ , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Fatores de Transcrição Otx/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/genética , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA