Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect ; 87(6): 524-537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852477

RESUMO

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Animais , Haplorrinos
2.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375333

RESUMO

Vaccine technology is still facing challenges regarding some infectious diseases, which can be addressed by innovative drug delivery systems. In particular, nanoparticle-based vaccines combined with new types of adjuvants are actively explored as a platform for improving the efficacy and durability of immune protection. Here, biodegradable nanoparticles carrying an antigenic model of HIV were formulated with two combinations of poloxamers, 188/407, presenting or not presenting gelling properties, respectively. The study aimed to determine the influence of poloxamers (as a thermosensitive hydrogel or a liquid solution) on the adaptive immune response in mice. The results showed that poloxamer-based formulations were physically stable and did not induce any toxicity using a mouse dendritic cell line. Then, whole-body biodistribution studies using a fluorescent formulation highlighted that the presence of poloxamers influenced positively the dissemination profile by dragging nanoparticles through the lymphatic system until the draining and distant lymph nodes. The strong induction of specific IgG and germinal centers in distant lymph nodes in presence of poloxamers suggested that such adjuvants are promising components in vaccine development.


Assuntos
Poloxâmero , Vacinas , Poloxâmero/metabolismo , Adjuvantes de Vacinas , Distribuição Tecidual , Antígenos , Linfonodos/metabolismo , Adjuvantes Imunológicos/química , Células Dendríticas
3.
Antiviral Res ; 209: 105483, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496142

RESUMO

Hepatitis B virus remains a major medical burden with more than 250 million chronically infected patients worldwide and 900,000 deaths each year, due to the disease progression towards severe complications (cirrhosis, hepatocellular carcinoma). Despite the availability of a prophylactic vaccine, this infection is still pandemic in Western Pacific and African regions, where around 6% of the adult population is infected. Among novel anti-HBV strategies, innovative drug delivery systems, such as nanoparticle platforms to deliver vaccine antigens or therapeutic molecules have been investigated. Here, we developed polylactic acid-based biodegradable nanoparticles as an innovative and efficient vaccine. They are twice functionalized by (i) the entrapment of Pam3CSK4, an immunomodulator and ligand to Toll-Like-Receptor 1/2, and by (ii) the adsorption/coating of myristoylated (2-48) derived PreS1 from the HBV surface antigen, identified as the major viral attachment site on hepatocytes. We demonstrate that such formulations mimic HBV virion with an efficient peptide recognition by the immune system, and elicit potent and durable antibody responses in naive mice during at least one year. We also show that the most efficient in vitro viral neutralization was observed with NP-Pam3CSK4-dPreS1 sera. The immunogenicity of the derived HBV antigen is modulated by the likely synergistic action of both the dPreS1 coated nanovector and the adjuvant moiety. This formulation represents a promising vaccine alternative to fight HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Receptor 2 Toll-Like , Vacinas contra Hepatite B , Formação de Anticorpos , Adjuvantes Imunológicos , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle
4.
Pharmaceutics ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35057003

RESUMO

Micelles from amphiphilic polylactide-block-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) block copolymers of 105 nm in size were characterized and evaluated in a vaccine context. The micelles were non-toxic in vitro (both in dendritic cells and HeLa cells). In vitro fluorescence experiments combined with in vivo fluorescence tomography imaging, through micelle loading with the DiR near infrared probe, suggested an efficient uptake of the micelles by the immune cells. The antigenic protein p24 of the HIV-1 was successfully coupled on the micelles using the reactive N-succinimidyl ester groups on the micelle corona, as shown by SDS-PAGE analyses. The antigenicity of the coupled antigen was preserved and even improved, as assessed by the immuno-enzymatic (ELISA) test. Then, the performances of the micelles in immunization were investigated and compared to different p24-coated PLA nanoparticles, as well as Alum and MF59 gold standards, following a standardized HIV-1 immunization protocol in mice. The humoral response intensity (IgG titers) was substantially similar between the PLA micelles and all other adjuvants over an extended time range (one year). More interestingly, this immune response induced by PLA micelles was qualitatively higher than the gold standards and PLA nanoparticles analogs, expressed through an increasing avidity index over time (>60% at day 365). Taken together, these results demonstrate the potential of such small-sized micellar systems for vaccine delivery.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167538

RESUMO

Poly(lactic acid) (PLA) nanoparticles (NPs) are widely investigated due to their bioresorbable, biocompatible and low immunogen properties. Interestingly, many recent studies show that they can be efficiently used as drug delivery systems or as adjuvants to enhance vaccine efficacy. Our work focuses on the molecular mechanisms involved during the nanoprecipitation of PLA NPs from concentrated solutions of lactic acid polymeric chains, and their specific interactions with biologically relevant molecules. In this study, we evaluated the ability of a PLA-based nanoparticle drug carrier to vectorize either vitamin E or the Toll-like receptor (TLR) agonists Pam1CSK4 and Pam3CSK4, which are potent activators of the proinflammatory transcription factor NF-κB. We used dissipative particle dynamics (DPD) to simulate large systems mimicking the nanoprecipitation process for a complete NP. Our results evidenced that after the NP formation, Pam1CSK4 and Pam3CSK4 molecules end up located on the surface of the particle, interacting with the PLA chains via their fatty acid chains, whereas vitamin E molecules are buried deeper in the core of the particle. Our results allow for a better understanding of the molecular mechanisms responsible for the formation of the PLA NPs and their interactions with biological molecules located either on their surfaces or encapsulated within them. This work should allow for a rapid development of better biodegradable and safe vectorization systems with new drugs in the near future.

6.
Pharmaceutics ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825447

RESUMO

Many autoimmune disorders such as psoriasis lead to the alteration of skin components which generally manifests as unwanted topical symptoms. One of the most widely approved psoriasis-like animal models is the imiquimod (IMQ)-induced mouse model. This representation mimics various aspects of the complex cutaneous pathology and could be appropriate for testing topical treatment options. We perform a thorough characterization of this model by assessing some parameters that are not fully described in the literature, namely a precise description of skin disruption. It was evaluated by transepidermal water loss measurements and analyses of epidermis swelling as a consequence of keratinocyte hyperproliferation. The extent of neo-angiogenesis and hypervascularity in dermis were highlighted by immunostaining. Moreover, we investigated systemic inflammation through cytokines levels, spleen swelling and germinal centers appearance in draining lymph nodes. The severity of all parameters was correlated to IMQ concentration in skin samples. This study outlines new parameters of interest useful to assess this model. We highlight the skin barrier disruption and report a systemic inflammatory reaction occurring at distance both in spleen and lymph nodes. These newly identified biological endpoints could be exploited to investigate the efficacy of therapeutic candidates for psoriasis and more extensively for several other skin inflammatory diseases.

7.
Int J Pharm ; 568: 118569, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31352045

RESUMO

Designing potent and safe-of-use therapies against cancers and infections remains challenging despite the emergence of novel molecule classes like checkpoint inhibitors or Toll-Like-Receptor ligands. The latest therapeutic perspectives under development for immune modulator administration exploits vectorization, and biodegradable delivery systems are one of the most promising vehicles. Nanoparticles based on Poly (D,L) Lactic Acid (PLA) as polymer for formulation are widely investigated due to its bioresorbable, biocompatible and low immunogen properties. We propose a PLA-based nanoparticle delivery system to vectorize Pam3CSK4, a lipopeptide TLR1/2 ligand and a potent activator of the proinflammatory transcription factor NF-κB that shows a self-assembling behavior from 30 µg/mL onwards. We demonstrate successful encapsulation of Pam3CSK4 in PLA nanoparticles by nanoprecipitation in a 40-180 µg/mL concentration range, with 99% of entrapment efficiency. By molecular modelling, we characterize drug/carrier interactions and conclude that Pam3CSK4 forms clusters onto the nanoparticle and is not encapsulated into the hydrophobic core. In silico predictions provide nanoprecipitation optimization and the mechanistic understanding of the particle dynamics. The loaded-Pam3CSK4 maintains bioactivity on TLR2, confirmed by in vitro experiments using reporter cell line HEK-Blue hTLR2. Our presented data and results are convincing evidence that Pam3CSK4-loaded in PLA nanoparticles represent a promising immune modulating system.


Assuntos
Sistemas de Liberação de Medicamentos , Lipopeptídeos/química , Modelos Moleculares , Nanopartículas/química , Poliésteres/química , Receptor 2 Toll-Like/agonistas , Linhagem Celular , Humanos , Lipopeptídeos/administração & dosagem , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA