Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Cell Dev Biol ; 12: 1266842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362040

RESUMO

Introduction: Maintenance of the intestinal barrier mainly relies on the mitochondrial function of intestinal epithelial cells that provide ATP through oxidative phosphorylation (OXPHOS). Dietary fatty acid overload might induce mitochondrial dysfunction of enterocytes and may increase intestinal permeability as indicated by previous in vitro studies with palmitic acid (C16:0). Yet the impact of other dietary saturated fatty acids remains poorly described. Methods: To address this question, the in vitro model of porcine enterocytes IPEC-J2 was treated for 3 days with 250 µM of lauric (C12:0), myristic (C14:0), palmitic (C16:0) or stearic (C18:0) acids. Results and discussion: Measurement of the transepithelial electrical resistance, reflecting tight junction integrity, revealed that only C16:0 and C18:0 increased epithelial permeability, without modifying the expression of genes encoding tight junction proteins. Bioenergetic measurements indicated that C16:0 and C18:0 were barely ß-oxidized by IPEC-J2. However, they rather induced significant OXPHOS uncoupling and reduced ATP production compared to C12:0 and C14:0. These bioenergetic alterations were associated with elevated mitochondrial reactive oxygen species production and mitochondrial fission. Although C12:0 and C14:0 treatment induced significant lipid storage and enhanced fusion of the mitochondrial network, it only mildly decreased ATP production without altering epithelial barrier. These results point out that the longer chain fatty acids C16:0 and C18:0 increased intestinal permeability, contrary to C12:0 and C14:0. In addition, C16:0 and C18:0 induced an important energy deprivation, notably via increased proton leaks, mitochondrial remodeling, and elevated ROS production in enterocytes compared to C12:0 and C14:0.

2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298505

RESUMO

Inflammatory bowel diseases are chronic inflammation of the intestinal mucosa characterized by relapsing-remitting cycle periods of variable duration. Infliximab (IFX) was the first monoclonal antibody used for the treatment of Crohn's disease and ulcerative colitis (UC). High variability between treated patients and loss of IFX efficiency over time support the further development of drug therapy. An innovative approach has been suggested based on the presence of orexin receptor (OX1R) in the inflamed human epithelium of UC patients. In that context, the aim of this study was to compare, in a mouse model of chemically induced colitis, the efficacy of IFX compared to the hypothalamic peptide orexin-A (OxA). C57BL/6 mice received 3.5% dextran sodium sulfate (DSS) in drinking water for 5 days. Since the inflammatory flare was maximal at day 7, IFX or OxA was administered based on a curative perspective at that time for 4 days using intraperitoneal injection. Treatment with OxA promoted mucosal healing and decreased colonic myeloperoxidase activity, circulating concentrations of lipopolysaccharide-binding protein, IL-6 and tumor necrosis factor alpha (TNFα) and decreased expression of genes encoding cytokines in colonic tissues with better efficacy than IFX allowing for more rapid re-epithelization. This study demonstrates the comparable anti-inflammatory properties of OxA and IFX and shows that OxA is efficient in promoting mucosal healing, suggesting that OxA treatment is a promising new biotherapy.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Humanos , Infliximab/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos
3.
Free Radic Biol Med ; 205: 224-233, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315703

RESUMO

Mucosal healing has emerged as a therapeutic goal to achieve lasting clinical remission in ulcerative colitis. Intestinal repair in response to inflammation presumably requires higher energy supplies for the restoration of intestinal barrier and physiological functions. However, epithelial energy metabolism during intestinal mucosal healing has been little studied, whereas inflammation-induced alterations have been reported in the main energy production site, the mitochondria. The aim of the present work was to assess the involvement of mitochondrial activity and the events influencing their function during spontaneous epithelial repair after colitis induction in mouse colonic crypts. The results obtained show adaptations of colonocyte metabolism during colitis to ensure maximal ATP production for supporting energetic demand by both oxidative phosphorylation and glycolysis in a context of decreased mitochondrial biogenesis and through mitochondrial function restoration during colon epithelial repair. In parallel, colitis-induced mitochondrial ROS production in colonic epithelial cells was rapidly associated with transient expression of GSH-related enzymes. Mitochondrial respiration in colonic crypts was markedly increased during both inflammatory and recovery phases despite decreased expression of several mitochondrial respiratory chain complex subunits after colitis induction. Rapid induction of mitochondrial fusion was associated with mitochondrial function restoration. Finally, in contrast with the kinetics expression of genes involved in mitochondrial oxidative metabolism and in glycolysis, the expression of glutaminase was markedly reduced in the colonic crypts both during colitis and repair phases. Overall, our data suggest that the epithelial repair after colitis induction is characterized by a rapid and transient increased capacity for mitochondrial ATP production in a context of apparent restoration of mitochondrial biogenesis and metabolic reorientation of energy production. The potential implication of energy production adaptations within colonic crypts to sustain mucosal healing in a context of altered fuel supply is discussed.


Assuntos
Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Colo/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
FASEB J ; 37(4): e22853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939304

RESUMO

Obesity is characterized by systemic low-grade inflammation associated with disturbances of intestinal homeostasis and microbiota dysbiosis. Mitochondrial metabolism sustains epithelial homeostasis by providing energy to colonic epithelial cells (CEC) but can be altered by dietary modulations of the luminal environment. Our study aimed at evaluating whether the consumption of an obesogenic diet alters the mitochondrial function of CEC in mice. Mice were fed for 22 weeks with a 58% kcal fat diet (diet-induced obesity [DIO] group) or a 10% kcal fat diet (control diet, CTRL). Colonic crypts were isolated to assess mitochondrial function while colonic content was collected to characterize microbiota and metabolites. DIO mice developed obesity, intestinal hyperpermeability, and increased endotoxemia. Analysis of isolated colonic crypt bioenergetics revealed a mitochondrial dysfunction marked by decreased basal and maximal respirations and lower respiration linked to ATP production in DIO mice. Yet, CEC gene expression of mitochondrial respiration chain complexes and mitochondrial dynamics were not altered in DIO mice. In parallel, DIO mice displayed increased colonic bile acid concentrations, associated with higher abundance of Desulfovibrionaceae. Sulfide concentration was markedly increased in the colon content of DIO mice. Hence, chronic treatment of CTRL mouse colon organoids with sodium sulfide provoked mitochondrial dysfunction similar to that observed in vivo in DIO mice while acute exposure of isolated mitochondria from CEC of CTRL mice to sodium sulfide diminished complex IV activity. Our study provides new insights into colon mitochondrial dysfunction in obesity by revealing that increased sulfide production by DIO-induced dysbiosis impairs complex IV activity in mouse CEC.


Assuntos
Dieta Hiperlipídica , Disbiose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Obesidade/metabolismo , Sulfetos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
5.
Nutrients ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889770

RESUMO

Lactoferrin (LF) is an iron-binding protein found at relatively high concentrations in human milk. LF, which is little degraded in the infant intestinal lumen, is known to stimulate the proliferation and differentiation of the small intestine epithelial cells. The present study was designed to evaluate in the rat model the effects of bovine LF (bLF) given to the mothers during gestation and lactation on the growth of the offspring. Female Wistar rats were randomly separated into two groups of animals that received from mating and during gestation and lactation a standard diet including or not including bLF (10 g/kg of diet). The pups' growth was determined up to postnatal day 17 (PND17), and parameters related to lean and fat mass, intestinal differentiation, intestinal barrier function, bone mineral density, osteoblast activity, and brain development were measured. In addition, metabolites in pup plasma were determined at PND17. bLF was detected in the plasma and milk of the supplemented mothers as well as in the pup plasma. Although the body weight of the pups in the two groups did not differ at birth, the pups recovered from the supplemented mothers displayed an increase body weight from PND12 up to PND17. At PND17 in the bLF group, increased small intestine epithelial cell differentiation was detected, and colon barrier function was reinforced in association with increased expression of genes coding for the tight-junction proteins. Regarding bone physiology, improved bone mineral density was measured in the pups. Lastly, the plasma metabolite analysis revealed mainly higher amino acid concentrations in the LF pups as compared to the control group. Our results support that bLF ingestion by the mother during gestation and lactation can promote pup early life development. The potential interest of supplementing the mothers with bLF in the case of risk of compromised early life development of the offspring in the context of animal and human nutrition is discussed.


Assuntos
Lactação , Lactoferrina , Animais , Peso Corporal , Bovinos , Suplementos Nutricionais , Feminino , Lactoferrina/farmacologia , Gravidez , Ratos , Ratos Wistar
6.
Mol Metab ; 63: 101546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817394

RESUMO

BACKGROUND: Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. SCOPE OF REVIEW: This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. MAJOR CONCLUSIONS: HFD consumption provokes a metabolic shift toward fatty acid ß-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid ß-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.


Assuntos
Disbiose , Obesidade , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Humanos , Mucosa Intestinal/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo
7.
Inflamm Bowel Dis ; 27(1): 65-73, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32055825

RESUMO

BACKGROUND: The incidence of inflammatory bowel diseases (IBDs) tended to increase for several decades. Diet is suspected to be a major determinant of the occurrence of these diseases. This prospective study aimed to assess the associations among occurrence of IBD, dietary patterns, and ultra-processed food in the French NutriNet-Santé cohort. METHODS: Participants of the NutriNet-Santé cohort who completed at least three 24-hour dietary records were included. Incident IBD cases were identified from 3 questionnaires and confirmed by phone or email interview. Major dietary patterns (DPs) were computed using a principal component analysis (PCA) based on 29 food groups' consumption, whereas proportions of ultra-processed foods (UPFs) were obtained using the NOVA classification. Multivariable Poisson models were performed to evaluate associations among DP quintiles, UPF proportion (UPFp) in the diet, and incident IBD. RESULTS: A total of 105,832 participants were included, contributing 238,924 person-years in a mean follow-up of 2.3 ± 2.2 years. Among them, 75 participants reported an incident IBD. Three major DPs were retained: "healthy," "traditional," and "western." No significant association was found for DPs and UPFp after adjustments for covariates. CONCLUSIONS: In this study, neither DPs nor UPF proportion in the diet were significantly associated with the risk of incident IBD after adjustments for covariates. Further studies are needed to investigate the long-term association between diet and IBD.


Assuntos
Colite Ulcerativa/epidemiologia , Doença de Crohn/epidemiologia , Dieta/estatística & dados numéricos , Fast Foods/estatística & dados numéricos , Doenças Inflamatórias Intestinais/epidemiologia , Adulto , Colite Ulcerativa/etiologia , Doença de Crohn/etiologia , Dieta/efeitos adversos , Registros de Dieta , Inquéritos sobre Dietas , Fast Foods/efeitos adversos , Comportamento Alimentar , Feminino , França/epidemiologia , Humanos , Incidência , Doenças Inflamatórias Intestinais/etiologia , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários
8.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G125-G135, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084401

RESUMO

Among bacterial metabolites, hydrogen sulfide (H2S) has received increasing attention. The epithelial cells of the large intestine are exposed to two sources of H2S. The main one is the luminal source that results from specific bacteria metabolic activity toward sulfur-containing substrates. The other source in colonocytes is from the intracellular production mainly through cystathionine ß-synthase (CBS) activity. H2S is oxidized by the mitochondrial sulfide oxidation unit, resulting in ATP synthesis, and, thus, establishing this compound as the first mineral energy substrate in colonocytes. However, when the intracellular H2S concentration exceeds the colonocyte capacity for its oxidation, it inhibits the mitochondrial respiratory chain, thus affecting energy metabolism. Higher luminal H2S concentration affects the integrity of the mucus layer and displays proinflammatory effects. However, a low/minimal amount of endogenous H2S exerts an anti-inflammatory effect on the colon mucosa, pointing out the ambivalent effect of H2S depending on its intracellular concentration. Regarding colorectal carcinogenesis, forced CBS expression in late adenoma-like colonocytes increased their proliferative activity, bioenergetics capacity, and tumorigenicity; whereas, genetic ablation of CBS in mice resulted in a reduced number of mutagen-induced aberrant crypt foci. Activation of endogenous H2S production and low H2S extracellular concentration enhance cancerous colorectal cell proliferation. Higher exogenous H2S concentrations markedly reduce mitochondrial ATP synthesis and proliferative capacity in cancerous cells and enhance glycolysis but do not affect their ATP cell content or viability. Thus, it appears that, notably through an effect on colonocyte energy metabolism, endogenous and microbiota-derived H2S are involved in the host intestinal physiology and physiopathology.


Assuntos
Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Sulfeto de Hidrogênio/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Reto/efeitos dos fármacos , Animais , Humanos , Sulfeto de Hidrogênio/toxicidade , Mucosa Intestinal/citologia
9.
Eur J Nutr ; 60(3): 1669-1677, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32808061

RESUMO

PURPOSE: Inflammatory bowel diseases are associated with an increase in the whole-body protein turnover, thus possibly requiring an additional supply of dietary proteins. Our aim was to evaluate whether increasing dietary protein content could alleviate protein metabolism alterations in the injured splanchnic and peripheral tissues during colitis and spontaneous mucosal healing. METHODS: Mice with acute chemically induced colitis received either a normal protein (P14, 14% as energy), a moderately (P30, 30%) and a very high-protein (P53, 55%) diets. At different times after the challenge, protein synthesis rate was determined in tissues using a flooding dose of 13C valine. RESULTS: Colon, liver and spleen protein synthesis rates were significantly increased after colitis induction, while being decreased in the caecum, kidneys and muscle. Contrastingly to the two other diets, P30 diet consumption allowed faster recovery of the animals, and this coincided with a rapid resaturation of the initial protein synthesis in the colon. In the other tissues studied, the high-protein diets show different effects depending on the dietary protein content consumed and on the examined tissues, with a general trend of P53 in lowering anabolism rates. CONCLUSION: This study highlights the severe impact of acute colonic inflammation on protein metabolism in different organs. In addition, dietary protein content modulated the recovery of the initial protein synthesis rate in the various tissues following colitis induction. P30 diet consumption notably showed a better ability to alleviate protein metabolism perturbations induced by colitis, that may explain its documented beneficial effect on colon mucosal healing.


Assuntos
Colite , Animais , Ceco , Colite/induzido quimicamente , Colo , Sulfato de Dextrana , Proteínas Alimentares , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos
10.
Am J Gastroenterol ; 115(8): 1293-1297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32467505

RESUMO

INTRODUCTION: This study aimed to assess the association between incident Crohn's disease (CD) or incident ulcerative colitis (UC) and dietary zinc intake. METHODS: NutriNet-Santé cohort's participants who completed at least three 24-hour dietary records were included and incident CD or UC cases were identified. Multivariable Poisson models were performed to assess associations between tertiles of zinc intake and CD or UC. RESULTS: Among the 105,832 participants, 27 reported incident CD and 48 reported incident UC. The relative risks of CD decreased with dietary zinc intakes. Compared with participants with the lowest tertile of zinc intake, the relative risks for CD were 0.60 (95% confidence interval [0.22-1.66]) and 0.12 (95% confidence interval [0.02-0.73]) for the second and the highest tertiles, respectively (Ptrend = 0.02). No significant association was observed for UC. DISCUSSION: Dietary zinc intake was inversely associated with incident CD.


Assuntos
Colite Ulcerativa/epidemiologia , Doença de Crohn/epidemiologia , Suplementos Nutricionais , Zinco/administração & dosagem , Adulto , Estudos de Coortes , Registros de Dieta , Feminino , França/epidemiologia , Humanos , Incidência , Masculino , Fatores de Risco
11.
J Agric Food Chem ; 68(3): 788-798, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31852192

RESUMO

Sphingolipids appear as a promising class of components susceptible to prevent the onset of the metabolic syndrome (MetS). Gut availability and effects of Camelina sativa sphingolipids were investigated in a mouse model of dietary-induced MetS. Seed meals from two Camelina sativa lines enriched, respectively, in C24- and C16-NH2- glycosyl-inositol-phosphoryl-ceramides (NH2GIPC) were used in hypercaloric diets. After 5 weeks on these two hypercaloric diets, two markers of the MetS were alleviated (adiposity and insulin resistance) as well as inflammation markers and colon barrier dysfunction. A more pronounced effect was observed with the C16-NH2GIPC-enriched HC diet, in particular for colon barrier function. Despite a lower digestibility, C16-NH2GIPC were more prevalent in the intestine wall. Sphingolipids provided as camelina meal can therefore counteract some deleterious effects of a hypercaloric diet in mice at the intestinal and systemic levels. Interestingly, these beneficial effects seem partly dependent on sphingolipid acyl chain length.


Assuntos
Camellia/química , Mucosa Intestinal/metabolismo , Síndrome Metabólica/prevenção & controle , Extratos Vegetais/metabolismo , Esfingolipídeos/metabolismo , Ração Animal/análise , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Esfingolipídeos/química
12.
World J Gastroenterol ; 25(27): 3572-3589, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367158

RESUMO

BACKGROUND: Mucosal healing has become a therapeutic goal to achieve stable remission in patients with inflammatory bowel diseases. To achieve this objective, overlapping actions of complex cellular processes, such as migration, proliferation, and differentiation, are required. These events are longitudinally and tightly controlled by numerous factors including a wide range of distinct regulatory proteins. However, the sequence of events associated with colon mucosal repair after colitis and the evolution of the luminal content characteristics during this process have been little studied. AIM: To document the evolution of colon mucosal characteristics during mucosal healing using a mouse model with chemically-induced colitis. METHODS: C57BL/6 male mice were given 3.5% dextran sodium sulfate (DSS) in drinking water for 5 d. They were euthanized 2 (day 7), 5 (day 10), 8 (day 13), and 23 (day 28) d after DSS removal. The colonic luminal environment and epithelial repair processes during the inflammatory flare and colitis resolution were analyzed with reference to a non-DSS treated control group, euthanized at day 0. Epithelial repair events were assessed histo-morphologically in combination with functional permeability tests, expression of key inflammatory and repairing factors, and evaluation of colon mucosa-adherent microbiota composition by 16S rRNA sequencing. RESULTS: The maximal intensity of colitis was concomitant with maximal alterations of intestinal barrier function and histological damage associated with goblet cell depletion in colon mucosa. It was recorded 2 d after termination of the DSS-treatment, followed by a progressive return to values similar to those of control mice. Although signs of colitis were severe (inflammatory cell infiltrate, crypt disarray, increased permeability) and associated with colonic luminal alterations (hyperosmolarity, dysbiosis, decrease in short-chain fatty acid content), epithelial healing processes were launched early during the inflammatory flare with increased gene expression of certain key epithelial repair modulators, including transforming growth factor-ß, interleukin (Il)-15, Il-22, Il-33, and serum amyloid A. Whereas signs of inflammation progressively diminished, luminal colonic environment alterations and microscopic abnormalities of colon mucosa persisted long after colitis induction. CONCLUSION: This study shows that colon repair can be initiated in the context of inflamed mucosa associated with alterations of the luminal environment and highlights the longitudinal involvement of key modulators.


Assuntos
Colite Ulcerativa/imunologia , Colo/patologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/patologia , Regeneração/imunologia , Animais , Movimento Celular , Proliferação de Células , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/citologia , Colo/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , RNA Ribossômico 16S
13.
Sci Rep ; 9(1): 11360, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388052

RESUMO

The aim of the present study was to elucidate the in vitro short-term (2-h) and longer-term (24-h) effects of hyperosmolar media (500 and 680 mOsm/L) on intestinal epithelial cells using the human colonocyte Caco-2 cell line model. We found that a hyperosmolar environment slowed down cell proliferation compared to normal osmolarity (336 mOsm/L) without inducing cell detachment or necrosis. This was associated with a transient reduction of cell mitochondrial oxygen consumption, increase in proton leak, and decrease in intracellular ATP content. The barrier function of Caco-2 monolayers was also transiently affected since increased paracellular apical-to-basal permeability and modified electrolyte permeability were measured, allowing partial equilibration of the trans-epithelial osmotic difference. In addition, hyperosmotic stress induced secretion of the pro-inflammatory cytokine IL-8. By measuring expression of genes involved in energy metabolism, tight junction forming, electrolyte permeability and intracellular signaling, different response patterns to hyperosmotic stress occurred depending on its intensity and duration. These data highlight the potential impact of increased luminal osmolarity on the intestinal epithelium renewal and barrier function and point out some cellular adaptive capacities towards luminal hyperosmolar environment.


Assuntos
Proliferação de Células , Enterócitos/metabolismo , Mitocôndrias/metabolismo , Concentração Osmolar , Consumo de Oxigênio , Células CACO-2 , Enterócitos/fisiologia , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Transdução de Sinais
14.
Biochim Biophys Acta Gen Subj ; 1863(8): 1292-1301, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034912

RESUMO

BACKGROUND: 4-hydroxyphenylacetic acid (HO-PAA) is produced by intestinal microbiota from L-tyrosine. High concentrations in human fecal water have been associated with cytotoxicity, urging us to test HO-PAA's effects on human colonocytes. We compared these effects with those of phenylacetic acid (PAA), phenol and acetaldehyde, also issued from amino acids fermentation. METHODS: HT-29 Glc-/+ human colonocytes were exposed for 24 h to metabolites at concentrations between 350 and 1000 µM for HO-PAA and PAA, 250-1500 µM for phenol and 25-500 µM for acetaldehyde. We evaluated metabolites'cytotoxicity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and DNA quantification assays, reactive oxygen species (ROS) production with H2DCF-DA, and DNA damage with the comet assay. We measured cell oxygen consumption and mitochondrial complexes activity by polarography. RESULTS: Although HO-PAA displayed no cytotoxic effect on colonocytes, it decreased mitochondrial complex I activity and oxygen consumption. This was paralleled by an increase in ROS production and DNA alteration. Cells pretreatment with N-acetylcysteine, a ROS scavenger, decreased genotoxic effects of HO-PAA, indicating implication of oxidative stress in HO-PAA's genotoxicity. PAA and phenol did not reproduce these effects, but were cytotoxic towards colonocytes. Last, acetaldehyde displayed no effect in terms of cytotoxicity and mitochondrial metabolic activity, but increased DNA damage. CONCLUSIONS: Several bacterial metabolites produced from amino acids displayed deleterious effects on human colonocytes, in terms of genotoxicity (HO-PAA and acetaldehyde) or cytotoxicity (PAA and phenol). GENERAL SIGNIFICANCE: This study helps understanding the consequences of intestinal microbiota's metabolic activity on the host since amino acids fermentation can lead to the formation of compounds toxic towards colonic epithelial cells.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Colo/metabolismo , DNA/metabolismo , Estresse Oxidativo , Células HT29 , Humanos , Técnicas In Vitro , Consumo de Oxigênio
15.
Nutrients ; 11(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823387

RESUMO

Mucosal healing after an inflammatory flare is associated with lasting clinical remission. The aim of the present work was to evaluate the impact of the amount of dietary protein on epithelial repair after an acute inflammatory episode. C57BL/6 DSS-treated mice received isocaloric diets with different levels of dietary protein: 14% (P14), 30% (P30) and 53% (P53) for 3 (day 10), 6 (day 13) and 21 (day 28) days after the time of colitis maximal intensity. While the P53 diet worsened the DSS- induced inflammation both in intensity and duration, the P30 diet, when compared to the P14 diet, showed a beneficial effect during the epithelial repair process by accelerating inflammation resolution, reducing colonic permeability and increasing epithelial repair together with epithelial hyperproliferation. Dietary protein intake also impacted mucosa-adherent microbiota composition after inflammation since P30 fed mice showed increased colonization of butyrate-producing genera throughout the resolution phase. This study revealed that in our colitis model, the amount of protein in the diet modulated mucosal healing, with beneficial effects of a moderately high-protein diet, while very high-protein diet displayed deleterious effects on this process.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Ração Animal , Animais , Dieta , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Clin Nutr ; 38(3): 1012-1022, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30274898

RESUMO

BACKGROUND & AIMS: This review examines to what extent high-protein diets (HPD), which may favor body weight loss and improve metabolic outcomes in overweight and obese individuals, may also impact the gut environment, shaping the microbiota and the host-microbe (co)metabolic pathways and products, possibly affecting large intestine mucosa homeostasis. METHODS: PubMed-referenced publications were analyzed with an emphasis on dietary intervention studies involving human volunteers in order to clarify the beneficial vs. deleterious effects of HPD in terms of both metabolic and gut-related health parameters; taking into account the interactions with the gut microbiota. RESULTS: HPD generally decrease body weight and improve blood metabolic parameters, but also modify the fecal and urinary contents in various bacterial metabolites and co-metabolites. The effects of HPD on the intestinal microbiota composition appear rather heterogeneous depending on the type of dietary intervention. Recently, HPD consumption was shown to modify the expression of genes playing key roles in homeostatic processes in the rectal mucosa, without evidence of intestinal inflammation. Importantly, the effects of HPD on the gut were dependent on the protein source (i.e. from plant or animal sources), a result which should be considered for further investigations. CONCLUSION: Although HPD appear to be efficient for weight loss, the effects of HPD on microbiota-derived metabolites and gene expression in the gut raise new questions on the impact of HPD on the large intestine mucosa homeostasis leading the authors to recommend some caution regarding the utilization of HPD, notably in a recurrent and/or long-term ways.


Assuntos
Dieta Rica em Proteínas , Dieta , Microbioma Gastrointestinal , Redução de Peso , Peso Corporal/fisiologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestino Grosso/microbiologia , Intestino Grosso/fisiologia
17.
Amino Acids ; 50(6): 755-763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700653

RESUMO

Hydrogen sulfide (H2S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H2S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H2S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H2S with the sulfide-oxidizing unit and slower binding of H2S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.


Assuntos
Colo/metabolismo , Frutas/química , Sulfeto de Hidrogênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Linhagem Celular Tumoral , Colo/citologia , Humanos , Extratos Vegetais/química , Proantocianidinas/química
18.
Nutr Metab (Lond) ; 14: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075306

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4), an innate immune receptor, is suspected to play a key role in the postprandial inflammation that is induced by a high-fat meal rich in saturated fatty acids (SFA). Our objective was to test this hypothesis by using a specific competitive inhibitor of TLR4 (INH) vs vehicle (VEH) administered immediately before a high-SFA meal in rats. METHODS: First, in a cross-over kinetic study of 12 rats receiving INH and VEH i.v. 10 min before the test meal, we measured plasma inflammatory and vascular markers for 6 h. Then, in 20 rats, 3 h after INH or VEH followed by the test meal (parallel study), we measured the mRNA level of a set of cytokines (Il1-ß, Il-6, Tnfα, Mcp-1, Pai-1), and of Tlr4 and Tlr2 in the adipose tissue and the liver, and that of adhesion molecules (Icam-1 and Vcam-1) in the aorta. RESULTS: Plasma IL-6 and PAI-1 increased >4-fold at 3-4 h after test-meals, very similarly after INH as compared to VEH. The expression of TLR2 and of all measured cytokine genes in the adipose tissue was dramatically higher after INH (vs VEH). In the liver, gene expression of Il1-ß, Tnfα, Mcp-1 and Tlr2, was also higher after INH, though more moderately, whereas that of Il-6 and Pai-1 was similar between groups. INH did not affect mRNA level of Icam-1 and Vcam-1 in the aorta. CONCLUSION: TLR4 activation is not specifically required to mediate systemic postprandial inflammation and we propose that TLR2 and TLR4 exert a dual and interdependent mediation of the postprandial inflammatory response, at least in the adipose tissue.

19.
Front Immunol ; 8: 1166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018440

RESUMO

OBJECTIVE: Roseburia hominis is a flagellated gut anaerobic bacterium belonging to the Lachnospiraceae family within the Firmicutes phylum. A significant decrease of R. hominis colonization in the gut of ulcerative colitis patients has recently been demonstrated. In this work, we have investigated the mechanisms of R. hominis-host cross talk using both murine and in vitro models. DESIGN: The complete genome sequence of R. hominis A2-183 was determined. C3H/HeN germ-free mice were mono-colonized with R. hominis, and the host-microbe interaction was studied using histology, transcriptome analyses and FACS. Further investigations were performed in vitro and using the TLR5KO and DSS-colitis murine models. RESULTS: In the bacterium, R. hominis, host gut colonization upregulated genes involved in conjugation/mobilization, metabolism, motility, and chemotaxis. In the host cells, bacterial colonization upregulated genes related to antimicrobial peptides, gut barrier function, toll-like receptors (TLR) signaling, and T cell biology. CD4+CD25+FoxP3+ T cell numbers increased in the lamina propria of both mono-associated and conventional mice treated with R. hominis. Treatment with the R. hominis bacterium provided protection against DSS-induced colitis. The role of flagellin in host-bacterium interaction was also investigated. CONCLUSION: Mono-association of mice with R. hominis bacteria results in specific bidirectional gene expression patterns. A set of genes thought to be important for host colonization are induced in R. hominis, while the host cells respond by strengthening gut barrier function and enhancing Treg population expansion, possibly via TLR5-flagellin signaling. Our data reveal the immunomodulatory properties of R. hominis that could be useful for the control and treatment of gut inflammation.

20.
Am J Clin Nutr ; 106(4): 1005-1019, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28903954

RESUMO

Background: Although high-protein diets (HPDs) are frequently consumed for body-weight control, little is known about the consequences for gut microbiota composition and metabolic activity and for large intestine mucosal homeostasis. Moreover, the effects of HPDs according to the source of protein need to be considered in this context.Objective: The objective of this study was to evaluate the effects of the quantity and source of dietary protein on microbiota composition, bacterial metabolite production, and consequences for the large intestinal mucosa in humans.Design: A randomized, double-blind, parallel-design trial was conducted in 38 overweight individuals who received a 3-wk isocaloric supplementation with casein, soy protein, or maltodextrin as a control. Fecal and rectal biopsy-associated microbiota composition was analyzed by 16S ribosomal DNA sequencing. Fecal, urinary, and plasma metabolomes were assessed by 1H-nuclear magnetic resonance. Mucosal transcriptome in rectal biopsies was determined with the use of microarrays.Results: HPDs did not alter the microbiota composition, but induced a shift in bacterial metabolism toward amino acid degradation with different metabolite profiles according to the protein source. Correlation analysis identified new potential bacterial taxa involved in amino acid degradation. Fecal water cytotoxicity was not modified by HPDs, but was associated with a specific microbiota and bacterial metabolite profile. Casein and soy protein HPDs did not induce inflammation, but differentially modified the expression of genes playing key roles in homeostatic processes in rectal mucosa, such as cell cycle or cell death.Conclusions: This human intervention study shows that the quantity and source of dietary proteins act as regulators of gut microbiota metabolite production and host gene expression in the rectal mucosa, raising new questions on the impact of HPDs on the large intestine mucosa homeostasis. This trial was registered at clinicaltrials.gov as NCT02351297.


Assuntos
Bactérias/metabolismo , Dieta com Restrição de Carboidratos , Proteínas Alimentares/farmacologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Intestino Grosso/metabolismo , Transcriptoma , Adulto , Aminoácidos/metabolismo , Bactérias/genética , Caseínas/farmacologia , DNA Bacteriano/análise , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Método Duplo-Cego , Fezes , Feminino , Homeostase , Humanos , Mucosa Intestinal/microbiologia , Intestino Grosso/microbiologia , Masculino , Obesidade/dietoterapia , RNA Ribossômico 16S , Reto/metabolismo , Reto/microbiologia , Proteínas de Soja/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA