Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202401766, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477673

RESUMO

Solar-thermal water evaporation is a promising strategy for clean water production, which needs the development of solar-thermal conversion materials with both high efficiency and high stability. Herein, we reported an ultra-stable cobalt(II)-organic assembly NKU-123 with light-generated radicals, exhibiting superior photothermal conversion efficiency and high stability. Under the irradiation of 808 nm light, the temperature of NKU-123 rapidly increases from 25.5 to 215.1 °C in 6 seconds. The solar water evaporator based on NKU-123 achieves a high solar-thermal water evaporation rate of 1.442 and 1.299 kg m-2 h-1 under 1-sun irradiation with a water evaporation efficiency of 97.8 and 87.9 % for pure water and seawater, respectively. A detailed mechanism study revealed that the formation of light-generated radicals leads to an increase of spin density of NKU-123 for enhancing the photothermal effect, which provides insights into the design of highly efficient photothermal materials.

2.
Dalton Trans ; 53(1): 148-152, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38018387

RESUMO

Photocontrolled magnetic properties are fundamental for the applications of molecular magnets, which have the features of high time and space resolution; however, such magnetic properties are highly challenging to be achieved owing to the weak light-matter interactions. Herein, the influence of in situ light irradiation on the field-induced magnetization dynamics of two Er(III) coordination polymers 1 and 2 with the same coordination skeletons but different halogen substituents was studied. 1 and 2, and their in situ photoexcited products 1a and 2a, display field-induced magnetization dynamics based on Orbach and/or Raman processes. The magnetization dynamics are fine-modulated by the synergetic effect of light irradiation and a ligand substituent, due to the charge re-distribution of the excited states of the ligand.

3.
Dalton Trans ; 52(30): 10372-10377, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465927

RESUMO

Light-induced substance conversion is highly promising for creating new radical-based compounds. Herein, we report an Er(III) coordination polymer [Er(CA)(ACA)(DMF)(H2O)]n (1) and its Y(III)-diluted analogue 1@Y (H2CA = 2,5-dichloro-3,6-dihydroxy-p-quinone, HACA = 9-anthracene carboxylic acid) with the light-induced transformation of the ligand to a radical. The χMT values of light-transformed products 1a and 1a@Y are higher than those of 1 and 1@Y, respectively, due to the formation of radicals by ultraviolet light irradiation, confirmed by EPR measurement as well. The effective energy barriers for magnetization reversal (Ueff) decrease from 72 K for 1 to 67 K for 1a, and from 117 K for 1@Y to 94 K for 1a@Y. This work not only provides a new light-conversion system but also reveals the nature of photo-induced variation of magnetic properties.

4.
Dalton Trans ; 50(37): 13124-13137, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581367

RESUMO

Photo-induced variation of magnetism from ligand-based electron transfer has been extensively studied because of its potential applications in magneto-optical memory devices, light-responsive switches, and high-density information storage materials. In this review, we discussed the progress in the photo-induced variation of magnetism in coordination polymers with ligand-to-metal charge transfer (LMCT), ligand-to-ligand charge transfer (LLCT) and internal ligand charge transfer (ILCT), which provides fundamentals for the rational design of multi-functional materials. We also discussed the design and synthetic strategy of such molecule-based materials and gave views on the current challenges and growth trends in this field.

5.
Dalton Trans ; 48(45): 17014-17021, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31693028

RESUMO

Rare loop-like isostructural one-dimensional coordination polymer (1D-CP) systems formulated as {Fe(DPIP)2(NCSe)2}n·4DMF (1) and {Fe(DPIP)2(NCSe)2}n·4DMF (2) were obtained by self-assembling FeII and pseudohalide NCX-(X = S, Se) ions in presence of the V-shaped bidentate bridging ligand, namely, N,N'-dipyridin-4-ylisophthalamide (DPIP), and were characterized by elemental analysis, IR spectroscopy, TGA, single crystal X-ray diffraction and powder X-ray diffraction. The magnetic studies show that complex 2 undergoes a complete thermally induced spin crossover (SCO) behavior centered at T1/2 = 120 K with ca. 5 K thermal hysteresis loop and light-induced excited spin state trapping effect (LIESST) with TLIESST = 65 K. However, either the homologous X = S (1) or the desolvated form of complex 2 is high spin at all temperatures, proving further the concerted synergy for the SCO of 2 between the intrinsic ligand field and that indirectly induced via hydrogen bond interaction. The current results provide valuable information for the design of new 1D SCO systems via the rational control of the cooperated effects derived from the intramolecular coordination bond and the intermolecular supramolecular interactions.

6.
Acta Crystallogr C Struct Chem ; 75(Pt 11): 1475-1481, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686657

RESUMO

A new cyanide-bridged FeIII-MnII heterobimetallic coordination polymer (CP), namely catena-poly[[[N,N'-(1,2-phenylene)bis(pyridine-2-carboxamidato)-κ4N,N',N'',N''']iron(III)]-µ-cyanido-κ2C:N-[bis(4,4'-bipyridine-κN)bis(methanol-κO)manganese(II)]-µ-cyanido-κ2N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4}n, (1), was prepared by the self-assembly of the trans-dicyanidoiron(III)-containing building block [Fe(bpb)(CN)2]- [bpb2- = N,N'-(1,2-phenylene)bis(pyridine-2-carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4'-bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide-bridged Fe-Mn units, with free perchlorate as the charge-balancing anion, which can be further extended into a two-dimensional supramolecular sheet structure via inter-chain π-π interactions between the 4,4'-bipyridine ligands. Within the chain, each MnII ion is six-coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide-bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one-dimensional alternating chain model leads to the magnetic coupling constants J1 = -1.35 and J2 = -1.05 cm-1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian-based density functional theoretical (DFT) calculations.

7.
Polymers (Basel) ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569813

RESUMO

Four cyanide-bridged FeIII-MnIII complexes {[Fe(qxcq)(CN)3][Mn(L1)(H2O)]}[Mn(L1)(H2O)(CH3OH)](ClO4)·1.5MeOH·0.5H2O (L1 = N,N'-bis(3-methoxy-5-bromosalicylideneiminate) (2), {[Fe(qxcq)(CN)3][Mn(L2)]}2·0.5H2O (L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)) (3), [Fe(qxcq)(CN)3][Mn(L3)] (L3 = bis(acetylacetonato)ethylenediimine) (4), [Fe(qxcq)(CN)3][Mn(L4)]·1.5MeOH·0.5CH3CN·0.25H2O (L4 = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate)) (5), were prepared by assembling a new structurally characterized mer-tricyanoiron(III) molecular precursor (Ph4P)[Fe(qxcq)(CN)3]·0.5H2O (qxcq- = 8-(2-quinoxaline-2-carboxamido)quinoline anion) (1) and the corresponding manganese(III) Schiff base compound. Complexes 2and 3containa cyanide-bridged heterobimetallic dinuclear entity, which can be further dimerized by self-complementary H-bond interactions through the coordinated water molecule from one complex and the free O4unit from the adjacent complex. Complexes 4 and 5 area one-dimensional coordination polymer (CP) comprised of the repeated [Mn(Schiffbase)-Fe(qxcq)(CN)3] units. Complex 4 shows a linear-chain conformation with two trans-located cyano groups bridgingthe neighboring Mn units, while complex 5 is a zigzag-like 1D CP, where the two cyano groups in cis configurationfunction as bridges. In bothcomplexes 4 and 5, the inter-chain π-πstack interactions within the aromaticrings of cyanide precursor extend the 1D chain into the supermolecular 2D networks. The magnetic property has been experimentally studied and theoretically fitted over the four Fe(III)-Mn(III) complexes, revealing the antiferromagnetic interaction in complexes 2 and 4 and the unusual ferromagnetic coupling in complexes 3 and 5 between the Fe(III) ion and the Mn(III) ion bridged by the cyano group. Furthermore, the different magnetic coupling nature has been analyzed on the basis of the magneto-structure correlation of the mer-tricyanometallate-based Fe(III)-Mn(III) magnetic system.

8.
Acta Crystallogr C Struct Chem ; 75(Pt 7): 990-995, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271389

RESUMO

A new coordination polymer (CP), namely poly[(µ-4,4'-bipyridine)(µ3-3,4'-oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4'-obb)(4,4'-bipy)]n (1), was prepared by the self-assembly of Co(NO3)2·6H2O with the rarely used 3,4'-oxydibenzoic acid (3,4'-obbH2) ligand and 4,4'-bipyridine (4,4'-bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction reveals that each CoII ion is six-coordinated by four O atoms from three 3,4'-obb2- ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4'-bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4'-obb2- ligands, affording an eight-membered Co2O4C2 ring which is further extended into a two-dimensional [Co(3,4'-obb)]n sheet along the ab plane via 3,4'-obb2- functioning as a bidentate bridging ligand. The planes are interlinked into a three-dimensional [Co(3,4'-obb)(4,4'-bipy)]n network by 4,4'-bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π-π interactions between the parallel 4,4'-bipy ligands.

9.
Top Curr Chem (Cham) ; 377(3): 18, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161309

RESUMO

Manganese(III) porphyrin complexes with various metal-containing/non-metal bridges reported during the past two decades, including their structural characteristics and magnetic properties, are summarized. As the porphyrin ligands usually adopt a planar chelate form, it is possible that the porphyrin-based complexes, being a coordination-acceptor building block, have two coordination labile sites in trans positions. In particular, the coordination labile sites in an octahedral field face the direction of the Jahn-Teller elongated axis occupying the dz2 orbital. As a result of this characteristic orbital arrangement, the activity and magnetic-electronic properties of the manganese complexes can be tuned by modulating the porphyrin ligand, which is equatorially located around the manganese ion and coupled with the dx2-y2 orbital. The high-spin Mn(III) porphyrin complexes (S = 2) display strong magnetic uniaxial anisotropy with the Jahn-Teller axis as the magnetic easy axis. So far, various manganese(III) porphyrin magnetism systems, including multinuclear clusters, one-dimensional chains, and two- or three-dimensional networks, have been designed and structurally and magnetically characterized. This review shows that the manganese(III) porphyrin complexes have potential as versatile sources for the design of unique magnetic materials as well as other molecular functional materials with various structures.


Assuntos
Imãs/química , Metaloporfirinas/química , Complexos de Coordenação/química , Cristalografia por Raios X , Cianetos/química , Dimerização , Magnetismo/métodos , Modelos Moleculares
10.
Chem Commun (Camb) ; 55(32): 4607-4610, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30869695

RESUMO

Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl)ethane (bpe) bridging ligands and [Hg(XCN)4]2- (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic HgII-FeII spin-crossover (SCO) 3D 6,4-connected coordination polymer (CP) formulated {Fe(bpe)[Hg(XCN)4]}n. For X = S (1), the ligand field is close to the crossing point but 1 remains paramagnetic over all temperatures. In contrast, for X = Se (2) the complex undergoes complete thermal induced SCO behaviour centred at T1/2 = 107.8 K and complete photoconversion of the low spin state into a metastable high-spin state (LIESST effect) with TLIESST = 66.7 K. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hoffmann-type structures.

11.
Acta Chim Slov ; 66(2): 308-314, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33855494

RESUMO

Two trans-dicyanidochromium(III)-containing building blocks and one chiral copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in three chiral cyanide-bridged Cr(III)-Cu(II) complexes, [Cu(L1)2Cr(L3)(CN)2]ClO42 · CH3OH · H2O (1a, L1 = (S,S)-1,2-diaminocyclohexane, H2L3 =1,2-bis(pyridine- 2-carboxamido)benzene), [Cu(L2)2Cr(L2)(CN)2]ClO42 · CH3OH · H2O (1b, L2 = (R,R)-1,2-diaminocyclohexane) [Cu(L3)2Cr(L4)(CN)2][Cr(L4)(CN)2] · CH3OH · 2H2O (2), (H2L4 = 1,2-bis(pyridine-2-carboxamido)-4-chlorobenzene). All the three complexes have been characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single-crystal X-ray diffraction analysis shows that the two enantiomeric complexes 1a, 1b and the complex 2 belong to cyanide-bridged cationic binuclear structure type with ClO4 - or the anionic cyanide building block as balance anion for complexes 1a, 1b or 2, respectively. Investigation of the magnetic properties of the complexes 1a and 2 reveals the weak ferromagnetic coupling between the neighboring Cr(III) and Cu(II) ions through the bridging cyanide group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA