Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066705

RESUMO

Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years. The enrichment of light Cd isotopes in the atmospheric deposition resulted in a significant shift toward lighter Cd isotopes in rice plants. Using a modified isotopic mass balance model, foliar and root uptake of deposited Cd accounted for 47-51% and 28-36% in leaves, 41-45% and 22-30% in stems, and 45-49% and 26-30% in grains, respectively. The implications of this study are that new atmospheric deposition disproportionately contributes to the uptake of Cd in rice, and managing emissions thus becomes very important versus remediation of impacted soils.

2.
Nat Commun ; 15(1): 5430, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926366

RESUMO

Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.

3.
Environ Sci Technol ; 57(40): 15047-15054, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774356

RESUMO

The 228Th:228Ra ratios of foliage and organic soil horizons evolve with time following a predictable radioactive decay law and thus provide a new chronometer for absolute age-dating of plant and soil organic matter. Preferential uptake of 228Th (t0.5 = 1.9 years) and 228Ra (t0.5 = 5.9 years) by canopy tree species, ferns, and mosses, drives disequilibrium in the 232Th-228Ra-228Th radioactive decay series within forest vegetation and organic soils. With examples from northeastern USA, we verify a new 228Th:228Ra age model by demonstrating its concordance with the fallout radionuclide chronometer 7Be:210Pb in the 0 to 5-year time frame [R2 = 0.87, RMSE = 0.5 years]. At our locality, canopy tree species assimilate 228Th with a typical initial ratio (228Th:228Ra)0 ∼ 0.3, but in several instances, both deciduous and coniferous tree species show a preference for Th over Ra with (228Th:228Ra)0 exceeding 5. While the 228Th:228Ra system is restricted to organic soil horizons, concordance of 228Th:228Ra with established 7Be:210Pb and 241Am bomb-pulse chronometers establishes a coherent age-dating system of soil organic matter based on three independent chronometers and five particle reactive metals, and spanning 0-200 years in time scale that encompasses both organic and mineral soils to depths of up to 30 cm. Concordance indicates that these metals all follow common processes of organometallic colloid formation and migration and, in conjunction with 14C, may open new opportunities to understand soil pedogenic processes that regulate the storage of carbon and atmospheric metals such as Pb and Hg.


Assuntos
Chumbo , Poluentes Radioativos do Solo , Solo , Radioisótopos , Plantas , Árvores , Poluentes Radioativos do Solo/análise
4.
Environ Sci Process Impacts ; 24(10): 1805-1820, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36065894

RESUMO

Mercury (Hg) deposition was reconstructed in sediment cores from lakes in two coastal U.S. National Parks: Acadia National Park (ANP) and Cape Cod National Seashore (CCNS), to fill an important spatial gap in Hg deposition records and to explore changing sources of Hg and processes affecting Hg accumulation in these coastal sites. Recent Hg deposition chronology was assessed using (1) a newly developed lead-210 (210Pb) based sediment age model which employs 7Be to constrain deposition and sediment mixing of 210Pb-excess, (2) coinciding Pb flux and isotope ratios (206Pb/207Pb), and (3) Hg isotope ratios and their response to changes in Hg flux. At both sites, Hg flux increased substantially from pre-1850 levels, with accumulation in ANP peaking in the 1970s, whereas in CCNS, Hg levels were highest in recent sediments. Negative values of δ202Hg and Δ199Hg indicated terrestrially-derived Hg was a major constituent of Hg flux to Sargent Mountain Pond, ANP, although recent decreases in Hg flux were in agreement with precipitation Hg records, indicating a rapid watershed response. By contrast, δ202Hg and Δ199Hg profiles in Long Pond, CNNS reflect direct Hg deposition, but disturbances in the sedimentary record were indicated by bomb fallout radionuclide inventories and by peaks in both Pb and Hg isotope depth profiles. These cores provided poor reconstructions of atmospheric deposition and reveal responses that are decoupled from emissions reduction due to complex post-depositional redistribution of atmospheric metals including Hg. The application of multiple tracers of Hg deposition provide insight into the sources and pathways governing Hg accumulation in these lakes.


Assuntos
Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Chumbo , Mercúrio/análise , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 55(21): 14957-14967, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34622656

RESUMO

We investigated the partitioning of 7Be, 10Be, and 210Pb aerosols between operationally dissolved and >0.5 µm particulate fractions in wet and dry atmospheric deposition. Bulk deposition in situ-log(KD) averaged 4.27 ± 0.46 for 7Be and 4.79 ± 0.59 for 210Pb (±SD, n = 163), with corresponding activity-fractions particulate (fP) = 24 and 48%. KD was inversely correlated with particulate mass concentration (pC), a particle concentration effect (p.c.e.) that indicates that dissolved 7Be and 210Pb are bound to submicron colloids. Experimental desorption-KD was higher than in situ by a factor of 20 for 7Be and 4 for 210Pb (n = 27), indicating that FRN sorption to particulates was irreversible. 7Be:10Be ratios confirmed that colloidal and particulate fractions were geochemically distinct, with corresponding ages of 120 ± 30 and 260 ± 45 days, respectively [mean ± SE, n = 9, p = 0.011]. Fractions particulate fBe7, fBe10, and fPb210 each increased with 7Be:10Be bulk age, a particle-age effect (p.a.e). In multiple regression, fBe7 was best predicted by N, Mn, Al, and Ni [R2 = 0.75, p < 0.0001], whereas fPb relied on N, S, Fe, and Mn [R2 = 0.69, p < 0.0001]. Despite differences in magnitude and controls on partitioning, the ratio fBe:fPb converged to 1 with pC in the range of 10-100 mg L-1. Given sufficient solid surfaces, irreversible sorption and p.a.e. form a basis for 7Be:210Pb chronometry of aerosol biogeochemical cycling.


Assuntos
Metais Pesados , Aerossóis , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Radioisótopos
6.
Environ Sci Process Impacts ; 21(2): 339-351, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30516236

RESUMO

High concentrations of barium (Ba), strontium (Sr) and radium (Ra) are present in both the liquid and suspended solid portions of wastewater produced from hydraulic fracturing. These high concentrations often require special treatment in which the solid and liquid portions are separated and then independently treated prior to disposal. The solids are typically disposed in landfills while the liquids are further treated, recycled for future hydraulic fracturing, or disposed via injection wells. Finding optimal treatment methods of both the solid and the liquid fractions requires a thorough understanding of potential Ra mobility from both the raw suspended solids and mineral precipitates formed during treatment. Using a sequential extraction procedure, we found that, without treatment, more than 50% of Ra-226 in the suspended solids was associated with soluble salts and readily exchangeable fractions. When the liquid portion of the wastewater was treated by mixing with acid mine drainage (AMD), which contained high sulfate concentrations, approximately 80-97% of the total Ra-226 in the mixture solution is found in the insoluble sulfate fraction of the precipitate. The activity of Ra-226 sequestered in the precipitated solid sulfate fractions is positively correlated with the Sr/Ba ratio of the wastewater-AMD solution. We discuss implications of these findings for effective long-term management of elevated radium in both solid and liquid wastes.


Assuntos
Fraturamento Hidráulico , Rádio (Elemento)/análise , Sulfatos/química , Águas Residuárias/química , Poluentes Radioativos da Água/análise , Mineração , Poluentes Radioativos da Água/isolamento & purificação
7.
Environ Sci Technol ; 52(3): 1045-1053, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29307178

RESUMO

Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L-1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W12SiO404-, an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.


Assuntos
Poluentes do Solo , Solo , Adsorção , Solubilidade , Tungstênio
8.
Environ Sci Technol ; 51(15): 8851-8860, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28699344

RESUMO

Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226Ra/228Ra and 87Sr/86Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.


Assuntos
Campos de Petróleo e Gás , Águas Residuárias , Poluentes Químicos da Água/análise , Pennsylvania , Rios , Água
9.
Environ Sci Technol ; 48(20): 12022-30, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25254326

RESUMO

Atmospheric deposition is the primary mechanism by which remote environments are impacted by anthropogenic contaminants. Vegetation plays a critical role in intercepting atmospheric aerosols, thereby regulating the timing and magnitude of both contaminant and nutrient delivery to underlying soils. However, quantitative models describing the fate of atmospherically derived elements on vegetation are limited by a lack of long-term measurements of both atmospheric flux and foliar concentrations. We addressed this gap in understanding by quantifying weekly atmospheric deposition of the naturally occurring radionuclide tracers (7)Be and (210)Pb, as well as their activities in leaves of colocated trees, for three years in New Hampshire, U.S. The accumulation of both (7)Be and (210)Pb in deciduous and coniferous vegetation is predicted by a model that is based solely on measured atmospheric fluxes, duration of leaf exposure, and radioactive decay. Any "wash off" processes that remove (7)Be and (210)Pb from foliage operate with a maximum half-time of greater than 370 days (P > 99%), which is an order of magnitude longer than previously assumed. The retention of both (7)Be and (210)Pb on leaves is thus quantitative and permanent, coupling the fate of (7)Be, (210)Pb and similar atmospheric species to that of the leaf matter itself. These findings demonstrate that the long-standing paradigm of a short "environmental half-life" for atmospheric contaminants deposited on natural surfaces must be re-evaluated.


Assuntos
Poluentes Radioativos do Ar/análise , Berílio/análise , Radioisótopos de Chumbo/análise , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Árvores , Atmosfera , Meia-Vida , New Hampshire , Folhas de Planta/química
10.
Environ Sci Technol ; 47(22): 12715-20, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24124645

RESUMO

Both modern anthropogenic emissions of mercury (Hg), primarily from artisanal and small-scale gold mining (ASGM), and preindustrial anthropogenic emissions from mining are thought to have a large impact on present-day atmospheric Hg deposition. We study the spatial distribution of Hg and its depositional history over the past ∼400 years in sediment cores from lakes located regionally proximal (∼90-150 km) to the largest ASGM in Peru and distal (>400 km) to major preindustrial mining centers. Total Hg concentrations in surface sediments from fourteen lakes are typical of remote regions (10-115 ng g(-1)). Hg fluxes in cores from four lakes demonstrate preindustrial Hg deposition in southeastern Peru was spatially variable and at least an order of magnitude lower than previously reported fluxes in lakes located closer to mining centers. Average modern (A.D. 2000-2011) Hg fluxes in these cores are 3.4-6.9 µg m(-2) a(-1), compared to average preindustrial (A.D. 1800-1850) fluxes of 0.8-2.5 µg m(-2) a(-1). Modern Hg fluxes determined from the four lakes are on average 3.3 (±1.5) times greater than their preindustrial fluxes, similar to those determined in other remote lakes around the world. This agreement suggests that Hg emissions from ASGM are likely not significantly deposited in nearby down-wind regions.


Assuntos
Mercúrio/análise , Mineração/história , Geografia , Sedimentos Geológicos/química , Ouro , História do Século XVII , Lagos/química , Peru
11.
Proc Natl Acad Sci U S A ; 110(38): E3557-66, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24009337

RESUMO

One or more bolide impacts are hypothesized to have triggered the Younger Dryas cooling at ∼12.9 ka. In support of this hypothesis, varying peak abundances of magnetic grains with iridium and magnetic microspherules have been reported at the Younger Dryas boundary (YDB). We show that bulk sediment and/or magnetic grains/microspherules collected from the YDB sites in Arizona, Michigan, New Mexico, New Jersey, and Ohio have (187)Os/(188)Os ratios ≥1.0, similar to average upper continental crust (= 1.3), indicating a terrestrial origin of osmium (Os) in these samples. In contrast, bulk sediments from YDB sites in Belgium and Pennsylvania exhibit (187)Os/(188)Os ratios <<1.0 and at face value suggest mixing with extraterrestrial Os with (187)Os/(188)Os of ∼0.13. However, the Os concentration in bulk sample and magnetic grains from Belgium is 2.8 pg/g and 15 pg/g, respectively, much lower than that in average upper continental crust (=31 pg/g), indicating no meteoritic contribution. The YDB site in Pennsylvania is remarkable in yielding 2- to 5-mm diameter spherules containing minerals such as suessite (Fe-Ni silicide) that form at temperatures in excess of 2000 °C. Gross texture, mineralogy, and age of the spherules appear consistent with their formation as ejecta from an impact 12.9 ka ago. The (187)Os/(188)Os ratios of the spherules and their leachates are often low, but Os in these objects is likely terrestrially derived. The rare earth element patterns and Sr and Nd isotopes of the spherules indicate that their source lies in 1.5-Ga Quebecia terrain in the Grenville Province of northeastern North America.


Assuntos
Sedimentos Geológicos/análise , Geologia/métodos , Fenômenos Magnéticos , Meteoroides , Platina/análise , História Antiga , New Jersey , Osmio/análise , Pennsylvania , Silicatos/análise
12.
Proc Natl Acad Sci U S A ; 109(11): 4064-9, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22378648

RESUMO

Isotopes of iodine play significant environmental roles, including a limiting micronutrient ((127)I), an acute radiotoxin ((131)I), and a geochemical tracer ((129)I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout (131)iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) (137)cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer (7)beryllium, a consequence of the radionuclides' shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries.


Assuntos
Ecossistema , Cinza Radioativa/análise , Atmosfera/química , Sedimentos Geológicos/química , Radioisótopos do Iodo , Japão , Movimento (Física) , Chuva/química , Solo/química , Propriedades de Superfície
13.
Geomorphology (Amst) ; 128(1-2): 85-91, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21552357

RESUMO

Understanding of the transport mechanisms of contaminated soils and sediment is essential for the sustainable management of contaminated lands. In New England and elsewhere, vast areas of agricultural lands are contaminated by the historical application of lead-arsenate pesticides. Left undisturbed the physical and chemical mobility of As and Pb in these soils is limited due to their strong affinity for adsorption onto solid phases. However, soil disturbance promotes erosion and overland flow during intense rainstorms. Here we investigate the event-scale transport of disturbed As and Pb contaminated soils through measurement of concentrations of As and Pb in suspended sediment and changes in Pb isotopic ratios in overland flow. Investigation of several rain events shows that where land disturbance has occurred, physical transport of silt-sized particles and aggregates is the primary transport vector of As and Pb derived from pesticide-contaminated soil. Although both As and Pb are associated with similarly-sized particles, we find that solid-phase As is more effectively mobilized and transported than Pb. Our results demonstrate that anthropogenic land disturbance of historical lands contaminated with lead-arsenate pesticides may redistribute, through physical transport, significant amounts of As, and lesser amounts of Pb, to riparian and stream sediments, where they are potentially more bioavailable.

14.
Environ Sci Technol ; 42(11): 3951-7, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18589950

RESUMO

We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of > 100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10--50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were > 4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.


Assuntos
Sedimentos Geológicos/análise , Mineração , Rios , Urânio/análise , Poluentes Radioativos da Água/análise , Monitoramento Ambiental , New Mexico , Solubilidade , Urânio/química , Poluentes Radioativos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA