Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Aging Cell ; : e14144, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500398

RESUMO

Aging coincides with the progressive loss of muscle mass and strength, increased adiposity, and diminished physical function. Accordingly, interventions aimed at improving muscle, metabolic, and/or physical health are of interest to mitigate the adverse effects of aging. In this study, we tested a stem cell secretome product, which contains extracellular vesicles and growth, cytoskeletal remodeling, and immunomodulatory factors. We examined the effects of 4 weeks of 2×/week unilateral intramuscular secretome injections (quadriceps) in ambulatory aged male C57BL/6 mice (22-24 months) compared to saline-injected aged-matched controls. Secretome delivery substantially increased whole-body lean mass and decreased fat mass, corresponding to higher myofiber cross-sectional area and smaller adipocyte size, respectively. Secretome-treated mice also had greater whole-body physical function (grip strength and rotarod performance) and had higher energy expenditure and physical activity levels compared to control mice. Furthermore, secretome-treated mice had greater skeletal muscle Pax7+ cell abundance, capillary density, collagen IV turnover, reduced intramuscular lipids, and greater Akt and hormone sensitive lipase phosphorylation in adipose tissue. Finally, secretome treatment in vitro directly enhanced muscle cell growth and IL-6 production, and in adipocytes, it reduced lipid content and improved insulin sensitivity. Moreover, indirect treatment with secretome-treated myotube culture media also enhanced muscle cell growth and adipocyte size reduction. Together, these data suggest that intramuscular treatment with a stem cell secretome improves whole-body metabolism, physical function, and remodels skeletal muscle and adipose tissue in aged mice.

2.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076925

RESUMO

Stem-like T cell populations can selectively promote autoimmunity, but the activities that sustain these populations are incompletely understood. Here, we show that T cell-intrinsic loss of the transcription cofactor OCA-B protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to infection. In EAE models driven by antigen re-encounter, OCA-B deletion eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells within the CNS of mice with EAE display a memory phenotype and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B T cell-deficiency specifically protects mice from relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating T cell populations. At relapse, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and the loss of effector gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic stem-like T cells.

3.
Front Cell Neurosci ; 17: 1291255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099152

RESUMO

Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.

4.
J Neurochem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850241

RESUMO

Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.

5.
J Neuroimmunol ; 381: 578133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352687

RESUMO

Intracranial inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia are the resident immune cell of the central nervous system (CNS) and are considered important in regulating events associated with neuroinflammation as well as influencing both white matter damage and remyelination. To better understand mechanisms by which microglia contribute to these immune-mediated events, JHMV-infected mice with established demyelination were treated with the small molecular inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, to deplete microglia. Treatment with PLX5622 did not affect viral replication within the CNS yet the severity of demyelination was increased and remyelination impaired compared to control mice. Gene expression analysis revealed that targeting microglia resulted in altered expression of genes associated with immune cell activation and phagocytosis of myelin debris. These findings indicate that microglia are not critical in viral surveillance in persistently JHMV-infected mice yet restrict white matter damage and remyelination, in part, by influencing phagocytosis of myelin debris.


Assuntos
Infecções por Coronavirus , Doenças Desmielinizantes , Vírus da Hepatite Murina , Remielinização , Substância Branca , Camundongos , Animais , Microglia/metabolismo , Vírus da Hepatite Murina/fisiologia , Doenças Neuroinflamatórias , Infecções por Coronavirus/complicações , Camundongos Endogâmicos C57BL
6.
J Immunol ; 210(11): 1677-1686, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083696

RESUMO

Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.


Assuntos
Esclerose Múltipla , Células-Tronco Neurais , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Esclerose Múltipla/terapia , Ativação Linfocitária , Fatores de Transcrição Forkhead , Antígenos CD4
7.
Front Immunol ; 13: 931388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248905

RESUMO

Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Vírus da Hepatite Murina , Substância Branca , Animais , Sistema Nervoso Central , Quimiocina CXCL1/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Neutrófilos/metabolismo , RNA Mensageiro , Tetraciclinas , Substância Branca/metabolismo
8.
Neuron ; 110(19): 3106-3120.e7, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35961320

RESUMO

Breakdown of the blood-central nervous system barrier (BCNSB) is a hallmark of many neuroinflammatory disorders, such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we show that endothelial-to-mesenchymal transition (EndoMT) occurs in the CNS before the onset of clinical symptoms and plays a major role in the breakdown of BCNSB function. EndoMT can be induced by an IL-1ß-stimulated signaling pathway in which activation of the small GTPase ADP ribosylation factor 6 (ARF6) leads to crosstalk with the activin receptor-like kinase (ALK)-SMAD1/5 pathway. Inhibiting the activation of ARF6 both prevents and reverses EndoMT, stabilizes BCNSB function, reduces demyelination, and attenuates symptoms even after the establishment of severe EAE, without immunocompromising the host. Pan-inhibition of ALKs also reduces disease severity in the EAE model. Therefore, multiple components of the IL-1ß-ARF6-ALK-SMAD1/5 pathway could be targeted for the treatment of a variety of neuroinflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Proteínas Monoméricas de Ligação ao GTP , Esclerose Múltipla , Receptores de Ativinas/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Doenças Neuroinflamatórias , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
9.
Glia ; 70(5): 875-891, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35025109

RESUMO

Microglia are the primary resident myeloid cells of the brain responsible for maintaining homeostasis and protecting the central nervous system (CNS) from damage and infection. Monocytes and monocyte-derived macrophages arising from the periphery have also been implicated in CNS pathologies, however, distinguishing between different myeloid cell populations in the CNS has been difficult. Here, we set out to develop a reliable histological marker that can assess distinct myeloid cell heterogeneity and functional contributions, particularly in the context of disease and/or neuroinflammation. scRNAseq from brains of mice infected with the neurotropic JHM strain of the mouse hepatitis virus (JHMV), a mouse coronavirus, revealed that Lgals3 is highly upregulated in monocyte and macrophage populations, but not in microglia. Subsequent immunostaining for galectin-3 (encoded by Lgals3), also referred to as MAC2, highlighted the high expression levels of MAC2 protein in infiltrating myeloid cells in JHMV-infected and bone marrow (BM) chimeric mice, in stark contrast to microglia, which expressed little to no staining in these models. Expression of MAC2 was found even 6-10 months following BM-derived cell infiltration into the CNS. We also demonstrate that MAC2 is not a specific label for plaque-associated microglia in the 5xFAD mouse model, but only appears in a distinct subset of these cells in the presence of JHMV infection or during aging. Our data suggest that MAC2 can serve as a reliable and long-lasting histological marker for monocyte/macrophages in the brain, identifying an accessible approach to distinguishing resident microglia from infiltrating cells in the CNS under certain conditions.


Assuntos
Transplante de Medula Óssea , Infecções por Coronavirus , Animais , Encéfalo/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
10.
J Virol ; 96(4): e0196921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935438

RESUMO

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Viroses do Sistema Nervoso Central/imunologia , Microglia/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Quimiocinas/genética , Quimiocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia/virologia , Neurônios/imunologia , Neurônios/virologia , Replicação Viral/genética
11.
Expert Rev Clin Immunol ; 18(1): 57-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964406

RESUMO

INTRODUCTION: Coronaviruses are a large family of positive-stranded nonsegmented RNA viruses with genomes of 26-32 kilobases in length. Human coronaviruses are commonly associated with mild respiratory illness; however, the past three decades have seen the emergence of severe acute respiratory coronavirus (SARS-CoV), middle eastern respiratory coronavirus (MERS-CoV), and SARS-CoV-2 which is the etiologic agent for COVID-19. Severe forms of COVID-19 include acute respiratory distress syndrome (ARDS) associated with cytokine release syndrome that can culminate in multiorgan failure and death. Among the proinflammatory factors associated with severe COVID-19 are the chemokines CCL2, CCL3, CXCL8, and CXCL10. Infection of susceptible mice with murine coronaviruses, such as mouse hepatitis virus (MHV), elicits a similar chemokine response profile as observed in COVID-19 patients and these in vivo models have been informative and show that targeting chemokines reduces the severity of inflammation in target organs. AREAS COVERED: PubMed was used using keywords: Chemokines and coronaviruses; Chemokines and mouse hepatitis virus; Chemokines and COVID-19. Clinicaltrials.gov was used using keywords: COVID-19 and chemokines; COVID-19 and cytokines; COVID-19 and neutrophil. EXPERT OPINION: Chemokines and chemokine receptors are clinically relevant therapeutic targets for reducing coronavirus-induced inflammation.


Assuntos
COVID-19 , Receptores de Quimiocinas , Animais , Quimiocinas , Síndrome da Liberação de Citocina , Humanos , Camundongos , SARS-CoV-2
12.
bioRxiv ; 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34816260

RESUMO

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited anti-viral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine ( Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19 ) and cytokine ( Ifn-λ and Tnf-α ) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE: Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.

13.
Geroscience ; 43(6): 2635-2652, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427856

RESUMO

Aged individuals are at risk to experience slow and incomplete muscle recovery following periods of disuse atrophy. While several therapies have been employed to mitigate muscle mass loss during disuse and improve recovery, few have proven effective at both. Therefore, the purpose of this study was to examine the effectiveness of a uniquely developed secretome product (STEM) on aged skeletal muscle mass and function during disuse and recovery. Aged (22 months) male C57BL/6 were divided into PBS or STEM treatment (n = 30). Mice within each treatment were assigned to either ambulatory control (CON; 14 days of normal cage ambulation), 14 days of hindlimb unloading (HU), or 14 days of hindlimb unloading followed by 7 days of recovery (recovery). Mice were given an intramuscular delivery into the hindlimb muscle of either PBS or STEM every other day for the duration of their respective treatment group. We found that STEM-treated mice compared to PBS had greater soleus muscle mass, fiber cross-sectional area (CSA), and grip strength during CON and recovery experimental conditions and less muscle atrophy and weakness during HU. Muscle CD68 +, CD11b + and CD163 + macrophages were more abundant in STEM-treated CON mice compared to PBS, while only CD68 + and CD11b + macrophages were more abundant during HU and recovery conditions with STEM treatment. Moreover, STEM-treated mice had lower collagen IV and higher Pax7 + cell content compared to PBS across all experimental conditions. As a follow-up to examine the cell autonomous role of STEM on muscle, C2C12 myotubes were given STEM or horse serum media to examine myotube fusion/size and effects on muscle transcriptional networks. STEM-treated C2C12 myotubes were larger and had a higher fusion index and were related to elevated expression of transcripts associated with extracellular matrix remodeling. Our results demonstrate that STEM is a unique cocktail that possesses potent immunomodulatory and cytoskeletal remodeling properties that may have translational potential to improve skeletal muscle across a variety of conditions that adversely effect aging muscle.


Assuntos
Células-Tronco Pluripotentes , Secretoma , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia
15.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999036

RESUMO

Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.


Assuntos
Infecções do Sistema Nervoso Central/imunologia , Infecções do Sistema Nervoso Central/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Hepatite Murina/fisiologia , Animais , Infecções do Sistema Nervoso Central/genética , Infecções do Sistema Nervoso Central/patologia , Biologia Computacional/métodos , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Encefalomielite/genética , Encefalomielite/imunologia , Encefalomielite/patologia , Encefalomielite/virologia , Perfilação da Expressão Gênica , Antígenos H-2/genética , Antígenos H-2/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Camundongos , Análise de Sequência de RNA , Análise de Célula Única
16.
Glia ; 68(11): 2345-2360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449994

RESUMO

The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.


Assuntos
Encéfalo/imunologia , Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Microglia/imunologia , Vírus da Hepatite Murina/imunologia , Compostos Orgânicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Infecções por Coronavirus/induzido quimicamente , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/virologia
17.
Neurobiol Dis ; 140: 104868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276110

RESUMO

Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla/terapia , Células-Tronco Neurais/transplante , Remielinização , Linfócitos T Reguladores , Animais , Humanos , Masculino , Camundongos , Bainha de Mielina , Transplante de Células-Tronco
18.
Cell Rep ; 30(9): 2889-2899.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130894

RESUMO

Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αß T cell numbers. MPC1-deficient T cells have defective thymic development at the ß-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αß T cell development and that its deficiency results in reduced but activated peripheral T cell populations.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Homeostase , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linfócitos T/metabolismo , Timo/crescimento & desenvolvimento , Timo/metabolismo , Animais , Proteínas de Transporte de Ânions/deficiência , Deleção de Genes , Glicólise , Hematopoese , Humanos , Inflamação/patologia , Células Jurkat , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Transportadores de Ácidos Monocarboxílicos/deficiência , Oxirredução , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Timócitos/metabolismo
19.
PLoS Pathog ; 16(1): e1008261, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999807

RESUMO

Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.


Assuntos
Barreira Hematoencefálica/parasitologia , Malária Cerebral/parasitologia , Receptor EphA2/metabolismo , Adolescente , Animais , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Malária Cerebral/genética , Malária Cerebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium falciparum/fisiologia , Receptor EphA2/genética
20.
DNA Cell Biol ; 39(1): 3-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31851535

RESUMO

The chemokine receptor CXCR2 is a receptor for CXC chemokines, including CXCL1 and CXCL2. CXCR2 is expressed by resident cells of the central nervous system, including neurons, microglia, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. CXCR2 signaling is important in regulating OPC biology with regard to positional migration and myelination during development. More recently, studies have argued that CXCR2 is involved in controlling events related to remyelination after experimentally induced demyelination. This review examines the concept that targeting CXCR2 may offer a novel therapeutic target for promoting remyelination.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Receptores de Interleucina-8B/genética , Remielinização/genética , Transdução de Sinais/genética , Animais , Sistema Nervoso Central/citologia , Doenças Desmielinizantes/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Receptores de Interleucina-8B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA