Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369248

RESUMO

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Assuntos
Quimiocina CCL19 , Hormônio do Crescimento , Prolactina , Sono , Humanos , Movimento Celular , Quimiocina CCL19/metabolismo , Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Sono/fisiologia
2.
Eur Heart J ; 44(47): 4935-4949, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37941454

RESUMO

BACKGROUND AND AIMS: Chronic inflammation and autoimmunity contribute to cardiovascular (CV) disease. Recently, autoantibodies (aAbs) against the CXC-motif-chemokine receptor 3 (CXCR3), a G protein-coupled receptor with a key role in atherosclerosis, have been identified. The role of anti-CXCR3 aAbs for CV risk and disease is unclear. METHODS: Anti-CXCR3 aAbs were quantified by a commercially available enzyme-linked immunosorbent assay in 5000 participants (availability: 97.1%) of the population-based Gutenberg Health Study with extensive clinical phenotyping. Regression analyses were carried out to identify determinants of anti-CXCR3 aAbs and relevance for clinical outcome (i.e. all-cause mortality, cardiac death, heart failure, and major adverse cardiac events comprising incident coronary artery disease, myocardial infarction, and cardiac death). Last, immunization with CXCR3 and passive transfer of aAbs were performed in ApoE(-/-) mice for preclinical validation. RESULTS: The analysis sample included 4195 individuals (48% female, mean age 55.5 ± 11 years) after exclusion of individuals with autoimmune disease, immunomodulatory medication, acute infection, and history of cancer. Independent of age, sex, renal function, and traditional CV risk factors, increasing concentrations of anti-CXCR3 aAbs translated into higher intima-media thickness, left ventricular mass, and N-terminal pro-B-type natriuretic peptide. Adjusted for age and sex, anti-CXCR3 aAbs above the 75th percentile predicted all-cause death [hazard ratio (HR) (95% confidence interval) 1.25 (1.02, 1.52), P = .029], driven by excess cardiac mortality [HR 2.51 (1.21, 5.22), P = .014]. A trend towards a higher risk for major adverse cardiac events [HR 1.42 (1.0, 2.0), P = .05] along with increased risk of incident heart failure [HR per standard deviation increase of anti-CXCR3 aAbs: 1.26 (1.02, 1.56), P = .03] may contribute to this observation. Targeted proteomics revealed a molecular signature of anti-CXCR3 aAbs reflecting immune cell activation and cytokine-cytokine receptor interactions associated with an ongoing T helper cell 1 response. Finally, ApoE(-/-) mice immunized against CXCR3 displayed increased anti-CXCR3 aAbs and exhibited a higher burden of atherosclerosis compared to non-immunized controls, correlating with concentrations of anti-CXCR3 aAbs in the passive transfer model. CONCLUSIONS: In individuals free of autoimmune disease, anti-CXCR3 aAbs were abundant, related to CV end-organ damage, and predicted all-cause death as well as cardiac morbidity and mortality in conjunction with the acceleration of experimental atherosclerosis.


Assuntos
Autoanticorpos , Doenças Cardiovasculares , Receptores CXCR3 , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apolipoproteínas E , Aterosclerose , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Espessura Intima-Media Carotídea , Fatores de Risco de Doenças Cardíacas , Insuficiência Cardíaca , Receptores de Quimiocinas , Fatores de Risco , Receptores CXCR3/imunologia
3.
Acta Physiol (Oxf) ; 239(2): e14028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37609862

RESUMO

Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.

4.
Curr Biol ; 33(5): 998-1005.e2, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917932

RESUMO

Vaccination is a major strategy to control a viral pandemic. Simple behavioral interventions that might boost vaccine responses have yet to be identified. We conducted meta-analyses to summarize the evidence linking the amount of sleep obtained in the days surrounding vaccination to antibody response in healthy adults. Authors of the included studies provided the information needed to accurately estimate the pooled effect size (ES) and 95% confidence intervals (95% CI) and to examine sex differences.1,2,3,4,5,6,7 The association between self-reported short sleep (<6 h/night) and reduced vaccine response did not reach our pre-defined statistical significant criteria (total n = 504, ages 18-85; overall ES [95% CI] = 0.29 [-0.04, 0.63]). Objectively assessed short sleep was associated with a robust decrease in antibody response (total n = 304, ages 18-60; overall ES [95% CI] = 0.79 [0.40, 1.18]). In men, the pooled ES was large (overall ES [95% CI] = 0.93 [0.54, 1.33]), whereas it did not reach significance in women (overall ES [95% CI] = 0.42 [-0.49, 1.32]). These results provide evidence that insufficient sleep duration substantially decreases the response to anti-viral vaccination and suggests that achieving adequate amount of sleep during the days surrounding vaccination may enhance and prolong the humoral response. Large-scale well-controlled studies are urgently needed to define (1) the window of time around inoculation when optimizing sleep duration is most beneficial, (2) the causes of the sex disparity in the impact of sleep on the response, and (3) the amount of sleep needed to protect the response.


Assuntos
Transtornos do Sono-Vigília , Vacinas , Adulto , Humanos , Feminino , Masculino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Duração do Sono , Formação de Anticorpos , Privação do Sono , Vacinação , Sono/fisiologia , Transtornos do Sono-Vigília/complicações
5.
Autoimmun Rev ; 22(2): 103236, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436750

RESUMO

Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Doenças Autoimunes/etiologia , Autoanticorpos , Autoantígenos , Linfócitos
6.
Front Immunol ; 13: 981532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238301

RESUMO

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Autoanticorpos , Humanos
7.
Stress ; 25(1): 267-275, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35855548

RESUMO

Several studies suggest a link between acute changes in inflammatory parameters due to an endotoxin or (psychological) stressor and the brain's stress response. The extent to which basal circulating levels of inflammatory markers are associated with the brain's stress response has been hardly investigated so far. In the present study, baseline plasma levels of the cytokine interleukin (IL)-6 were obtained and linked to neural markers of psychosocial stress using a modified version of the Montreal Imaging Stress Task in a sample of N = 65 healthy subjects (N = 39 female). Of three a-priori defined regions of interest - the amygdala, anterior insula, and anterior cingulate cortex - baseline IL-6 was significantly and negatively associated with stress-related neural activation in the right amygdala and left anterior insula. Our results suggest that baseline cytokines might be related to differences in the neural stress response and that this relationship could be inverse to that previously reported for induced acute changes in inflammation markers.


Assuntos
Tonsila do Cerebelo , Interleucina-6 , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Citocinas , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Interleucina-6/sangue , Imageamento por Ressonância Magnética/métodos , Estresse Psicológico/sangue
8.
Sci Adv ; 8(15): eabm5016, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427158

RESUMO

With newly rising coronavirus disease 2019 (COVID-19) cases, important data gaps remain on (i) long-term dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates in fixed cohorts (ii) identification of risk factors, and (iii) establishment of effective surveillance strategies. By polymerase chain reaction and antibody testing of 1% of the local population and >90,000 app-based datasets, the present study surveilled a catchment area of 300,000 inhabitants from March 2020 to February 2021. Cohort (56% female; mean age, 45.6 years) retention was 75 to 98%. Increased risk for seropositivity was detected in several high-exposure groups, especially nurses. Unreported infections dropped from 92 to 29% during the study. "Contact to COVID-19-affected" was the strongest risk factor, whereas public transportation, having children in school, or tourism did not affect infection rates. With the first SARS-CoV-2 cohort study, we provide a transferable model for effective surveillance, enabling monitoring of reinfection rates and increased preparedness for future pandemics.

9.
PLoS Biol ; 20(3): e3001567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324893

RESUMO

The circadian clock is an evolutionarily highly conserved endogenous timing program that structures physiology and behavior according to the time of day. Disruption of circadian rhythms is associated with many common pathologies. The emerging field of circadian medicine aims to exploit the mechanisms of circadian physiology and clock-disease interaction for clinical diagnosis, treatment, and prevention. In this Essay, we outline the principle approaches of circadian medicine, highlight the development of the field in selected areas, and point out open questions and challenges. Circadian medicine has unambiguous health benefits over standard care but is rarely utilized. It is time for clock biology to become an integrated part of translational research.


Assuntos
Relógios Circadianos , Relógios Circadianos/fisiologia , Ritmo Circadiano
10.
Semin Immunopathol ; 44(2): 239-254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041075

RESUMO

Twenty-four-hour rhythms in immune parameters and functions are robustly observed phenomena in biomedicine. Here, we summarize the important role of sleep and associated parameters on the neuroendocrine regulation of rhythmic immune cell traffic to different compartments, with a focus on human leukocyte subsets. Blood counts of "stress leukocytes" such as neutrophils, natural killer cells, and highly differentiated cytotoxic T cells present a rhythm with a daytime peak. It is mediated by morning increases in epinephrine, leading to a mobilization of these cells out of the marginal pool into the circulation following a fast, beta2-adrenoceptor-dependent inhibition of adhesive integrin signaling. In contrast, other subsets such as eosinophils and less differentiated T cells are redirected out of the circulation during daytime. This is mediated by stimulation of the glucocorticoid receptor following morning increases in cortisol, which promotes CXCR4-driven leukocyte traffic, presumably to the bone marrow. Hence, these cells show highest numbers in blood at night when cortisol levels are lowest. Sleep adds to these rhythms by actively suppressing epinephrine and cortisol levels. In addition, sleep increases levels of immunosupportive mediators, such as aldosterone and growth hormone, which are assumed to promote T-cell homing to lymph nodes, thus facilitating the initiation of adaptive immune responses during sleep. Taken together, sleep-wake behavior with its unique neuroendocrine changes regulates human leukocyte traffic with overall immunosupportive effects during nocturnal sleep. In contrast, integrin de-activation and redistribution of certain leukocytes to the bone marrow during daytime activity presumably serves immune regulation and homeostasis.


Assuntos
Ritmo Circadiano , Sono , Ritmo Circadiano/fisiologia , Humanos , Hidrocortisona/farmacologia , Hidrocortisona/fisiologia , Leucócitos , Contagem de Linfócitos , Sono/fisiologia
11.
Front Immunol ; 13: 1000951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36865523

RESUMO

Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.


Assuntos
Doenças Autoimunes , Jornada de Trabalho em Turnos , Dermatopatias , Transtornos do Sono do Ritmo Circadiano , Animais , Humanos , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Autoimunidade , Doença Crônica , Inflamação/etiologia , Inflamação/imunologia , Jornada de Trabalho em Turnos/efeitos adversos , Pele/imunologia , Dermatopatias/etiologia , Dermatopatias/imunologia , Transtornos do Sono do Ritmo Circadiano/etiologia , Transtornos do Sono do Ritmo Circadiano/imunologia
13.
J Clin Med ; 10(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34441971

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an acquired complex disease with patients suffering from the cardinal symptoms of fatigue, post-exertional malaise (PEM), cognitive impairment, pain and autonomous dysfunction. ME/CFS is triggered by an infection in the majority of patients. Initial evidence for a potential role of natural regulatory autoantibodies (AAB) to beta-adrenergic (AdR) and muscarinic acetylcholine receptors (M-AChR) in ME/CFS patients comes from a few studies. METHODS: Here, we analyzed the correlations of symptom severity with levels of AAB to vasoregulative AdR, AChR and Endothelin-1 type A and B (ETA/B) and Angiotensin II type 1 (AT1) receptor in a Berlin cohort of ME/CFS patients (n = 116) by ELISA. The severity of disease, symptoms and autonomic dysfunction were assessed by questionnaires. RESULTS: We found levels of most AABs significantly correlated with key symptoms of fatigue and muscle pain in patients with infection-triggered onset. The severity of cognitive impairment correlated with AT1-R- and ETA-R-AAB and severity of gastrointestinal symptoms with alpha1/2-AdR-AAB. In contrast, the patients with non-infection-triggered ME/CFS showed fewer and other correlations. CONCLUSION: Correlations of specific AAB against G-protein-coupled receptors (GPCR) with symptoms provide evidence for a role of these AAB or respective receptor pathways in disease pathomechanism.

14.
Front Immunol ; 12: 626308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854501

RESUMO

We have previously shown that conformational change in the ß2-integrin is a very early activation marker that can be detected with fluorescent multimers of its ligand intercellular adhesion molecule (ICAM)-1 for rapid assessment of antigen-specific CD8+ T cells. In this study, we describe a modified protocol of this assay for sensitive detection of functional antigen-specific CD4+ T cells using a monoclonal antibody (clone m24 Ab) specific for the open, high-affinity conformation of the ß2-integrin. The kinetics of ß2-integrin activation was different on CD4+ and CD8+ T cells (several hours vs. few minutes, respectively); however, m24 Ab readily stained both cell types 4-6 h after antigen stimulation. With this protocol, we were able to monitor ex vivo effector and memory CD4+ and CD8+ T cells specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), and hepatitis B virus (HBV) in whole blood or cryopreserved peripheral blood mononuclear cells (PBMCs) of infected or vaccinated individuals. By costaining ß2-integrin with m24 and CD154 Abs, we assessed extremely low frequencies of polyfunctional CD4+ T cell responses. The novel assay used in this study allows very sensitive and simultaneous screening of both CD4+ and CD8+ T cell reactivities, with versatile applicability in clinical and vaccination studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Integrinas/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Sítios de Ligação , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Proteínas de Transporte/química , Citocinas/metabolismo , Citomegalovirus/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/química , Antígenos HLA/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imuno-Histoquímica , Imunofenotipagem , Integrinas/genética , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Multimerização Proteica , SARS-CoV-2/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
15.
Brain Behav Immun ; 87: 329-338, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31904407

RESUMO

Sleep strongly impacts both humoral and cellular immunity; however, its acute effects on the innate immune defense against pathogens are unclear. Here, we elucidated in mice whether sleep affects the numbers and functions of innate immune cells and their defense against systemic bacterial infection. Sleep significantly increased numbers of classical monocytes in blood and spleen of mice that were allowed to sleep for six hours at the beginning of the normal resting phase compared to mice kept awake for the same time. The sleep-induced effect on classical monocytes was neither caused by alterations in corticosterone nor myelopoiesis, bone marrow egress or death of monocytes and did only partially involve Gαi-protein coupled receptors like chemokine receptor 2 (CCR2), but not the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) or lymphocyte function-associated antigen 1 (LFA-1). Notably, sleep suppressed the expression of the clock gene Arntl in splenic monocytes and the sleep-induced increase in circulating classical monocytes was abrogated in Arntl-deficient animals, indicating that sleep is a prerequisite for clock-gene driven rhythmic trafficking of classical monocytes. Sleep also enhanced the production of reactive oxygen species by monocytes and neutrophils. Moreover, sleep profoundly reduced bacterial load in blood and spleen of mice that were allowed to sleep before systemic bacterial infection and consequently increased survival upon infection. These data provide the first evidence that sleep enhances numbers and function of innate immune cells and therewith strengthens early defense against bacterial pathogens.


Assuntos
Infecções Bacterianas , Monócitos , Animais , Molécula 1 de Adesão Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Sono
16.
Trends Immunol ; 40(8): 674-686, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31262652

RESUMO

The mechanisms of CD4+ T-cell memory formation in the immune system are debated. With the well-established concept of memory formation in the central nervous system (CNS), we propose that formation of CD4+ T-cell memory depends on the interaction of two different cell systems handling two types of stored information. First, information about antigen (event) and challenge (context) is taken up by antigen-presenting cells, as initial storage. Second, event and context information is transferred to CD4+ T cells. During activation, two categories of CD4+ T cell develop: effector CD4+ T cells, carrying event and context information, enabling them to efficiently focus their response to tissues under attack; and persisting CD4+ T cells, providing context-independent antigen-specific memories and long-term storage. This novel hypothesis is supported by the observation that mammalian sleep can improve both CNS and CD4+ T-cell memory.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Memória Imunológica , Sono/fisiologia , Animais , Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Mamíferos , Transdução de Sinais
17.
Mol Cancer Ther ; 18(10): 1832-1843, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350344

RESUMO

The FGFR4/FGF19 signaling axis is overactivated in 20% of liver tumors and currently represents a promising targetable signaling mechanism in this cancer type. However, blocking FGFR4 or FGF19 has proven challenging due to its physiological role in suppressing bile acid synthesis which leads to increased toxic bile acid plasma levels upon FGFR4 inhibition. An FGFR4-targeting antibody, U3-1784, was generated in order to investigate its suitability as a cancer treatment without major side effects.U3-1784 is a high-affinity fully human antibody that was obtained by phage display technology and specifically binds to FGFR4. The antibody inhibits cell signaling by competing with various FGFs for their FGFR4 binding site thereby inhibiting receptor activation and downstream signaling via FRS2 and Erk. The inhibitory effect on tumor growth was investigated in 10 different liver cancer models in vivo The antibody specifically slowed tumor growth of models overexpressing FGF19 by up to 90% whereas tumor growth of models not expressing FGF19 was unaffected. In cynomolgus monkeys, intravenous injection of U3-1784 caused elevated serum bile acid and liver enzyme levels indicating potential liver damage. These effects could be completely prevented by the concomitant oral treatment with the bile acid sequestrant colestyramine, which binds and eliminates bile acids in the gut. These results offer a new biomarker-driven treatment modality in liver cancer without toxicity and they suggest a general strategy for avoiding adverse events with FGFR4 inhibitors.


Assuntos
Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais/uso terapêutico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/imunologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resina de Colestiramina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia
18.
Physiol Rev ; 99(3): 1325-1380, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30920354

RESUMO

Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.


Assuntos
Sistema Imunitário/fisiologia , Imunidade/fisiologia , Sono/imunologia , Sono/fisiologia , Animais , Homeostase , Humanos , Imunidade Inata/fisiologia , Privação do Sono/imunologia
19.
J Exp Med ; 216(3): 517-526, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30755455

RESUMO

Efficient T cell responses require the firm adhesion of T cells to their targets, e.g., virus-infected cells, which depends on T cell receptor (TCR)-mediated activation of ß2-integrins. Gαs-coupled receptor agonists are known to have immunosuppressive effects, but their impact on TCR-mediated integrin activation is unknown. Using multimers of peptide major histocompatibility complex molecules (pMHC) and of ICAM-1-the ligand of ß2-integrins-we show that the Gαs-coupled receptor agonists isoproterenol, epinephrine, norepinephrine, prostaglandin (PG) E2, PGD2, and adenosine strongly inhibit integrin activation on human CMV- and EBV-specific CD8+ T cells in a dose-dependent manner. In contrast, sleep, a natural condition of low levels of Gαs-coupled receptor agonists, up-regulates integrin activation compared with nocturnal wakefulness, a mechanism possibly underlying some of the immune-supportive effects of sleep. The findings are also relevant for several pathologies associated with increased levels of Gαs-coupled receptor agonists (e.g., tumor growth, malaria, hypoxia, stress, and sleep disturbances).


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Sono/fisiologia , Adenosina/metabolismo , Adulto , Antígenos CD18/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Catecolaminas/metabolismo , Infecções por Citomegalovirus/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Epinefrina/farmacologia , Infecções por Vírus Epstein-Barr/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária , Masculino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA